Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations

Rademacher N, Wrobel TJ, Rossoni AW, Kurz S, Bräutigam A, Weber APM, Eisenhut M (2017)
Journal of Plant Physiology 217: 49-56.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Cyanidioschyzon merolae (C. merolae) is an acidophilic red alga growing in a naturally low carbon dioxide (CO2) environment. Although it uses a ribulose 1,5-bisphosphate carboxylase/oxygenase with high affinity for CO2, the survival of C. merolae relies on functional photorespiratory metabolism. In this study, we quantified the transcriptomic response of C. merolae to changes in CO2 conditions. We found distinct changes upon shifts between CO2 conditions, such as a concerted up-regulation of photorespiratory genes and responses to carbon starvation. We used the transcriptome data set to explore a hypothetical CO2 concentrating mechanism in C. merolae, based on the assumption that photorespiratory genes and possible candidate genes involved in a CO2 concentrating mechanism are co-expressed. A putative bicarbonate transport protein and two a-carbonic anhydrases were identified, which showed enhanced transcript levels under reduced CO2 conditions. Genes encoding enzymes of a PEPCK-type C-4 pathway were co-regulated with the photorespiratory gene cluster. We propose a model of a hypothetical low CO2 compensation mechanism in C. merolae integrating these low CO2-inducible components.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Rademacher N, Wrobel TJ, Rossoni AW, et al. Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology. 2017;217:49-56.
Rademacher, N., Wrobel, T. J., Rossoni, A. W., Kurz, S., Bräutigam, A., Weber, A. P. M., & Eisenhut, M. (2017). Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology, 217, 49-56. doi:10.1016/j.jplph.2017.06.014
Rademacher, N., Wrobel, T. J., Rossoni, A. W., Kurz, S., Bräutigam, A., Weber, A. P. M., and Eisenhut, M. (2017). Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology 217, 49-56.
Rademacher, N., et al., 2017. Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology, 217, p 49-56.
N. Rademacher, et al., “Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations”, Journal of Plant Physiology, vol. 217, 2017, pp. 49-56.
Rademacher, N., Wrobel, T.J., Rossoni, A.W., Kurz, S., Bräutigam, A., Weber, A.P.M., Eisenhut, M.: Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations. Journal of Plant Physiology. 217, 49-56 (2017).
Rademacher, Nadine, Wrobel, Thomas J., Rossoni, Alessandro W., Kurz, Samantha, Bräutigam, Andrea, Weber, Andreas P. M., and Eisenhut, Marion. “Transcriptional response of the extremophile red alga Cyanidioschyzon merolae to changes in CO2 concentrations”. Journal of Plant Physiology 217 (2017): 49-56.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 28705662
PubMed | Europe PMC

Search this title in

Google Scholar