Adaptive finite element methods for Cahn–Hilliard equations

Banas L, Nürnberg R (2008)
Journal of Computational and Applied Mathematics 218(1): 2-11.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
We develop a method for adaptive mesh refinement for steady state problems that arise in the numerical solution of Cahn–Hilliard equations with an obstacle free energy. The problem is discretized in time by the backward-Euler method and in space by linear finite elements. The adaptive mesh refinement is performed using residual based a posteriori estimates; the time step is adapted using a heuristic criterion. We describe the space–time adaptive algorithm and present numerical experiments in two and three space dimensions that demonstrate the usefulness of our approach.
Erscheinungsjahr
Zeitschriftentitel
Journal of Computational and Applied Mathematics
Band
218
Zeitschriftennummer
1
Seite
2-11
ISSN
PUB-ID

Zitieren

Banas L, Nürnberg R. Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics. 2008;218(1):2-11.
Banas, L., & Nürnberg, R. (2008). Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics, 218(1), 2-11. doi:10.1016/j.cam.2007.04.030
Banas, L., and Nürnberg, R. (2008). Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics 218, 2-11.
Banas, L., & Nürnberg, R., 2008. Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics, 218(1), p 2-11.
L. Banas and R. Nürnberg, “Adaptive finite element methods for Cahn–Hilliard equations”, Journal of Computational and Applied Mathematics, vol. 218, 2008, pp. 2-11.
Banas, L., Nürnberg, R.: Adaptive finite element methods for Cahn–Hilliard equations. Journal of Computational and Applied Mathematics. 218, 2-11 (2008).
Banas, Lubomir, and Nürnberg, Robert. “Adaptive finite element methods for Cahn–Hilliard equations”. Journal of Computational and Applied Mathematics 218.1 (2008): 2-11.