A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy

Banas L, Nürnberg R (2009)
ESAIM: Mathematical Modelling and Numerical Analysis 43(5): 1003-1026.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
;
Abstract / Notes
We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.
Publishing Year
PUB-ID

Cite this

Banas L, Nürnberg R. A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis. 2009;43(5):1003-1026.
Banas, L., & Nürnberg, R. (2009). A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis, 43(5), 1003-1026. doi:10.1051/m2an/2009015
Banas, L., and Nürnberg, R. (2009). A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis 43, 1003-1026.
Banas, L., & Nürnberg, R., 2009. A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis, 43(5), p 1003-1026.
L. Banas and R. Nürnberg, “A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy”, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 43, 2009, pp. 1003-1026.
Banas, L., Nürnberg, R.: A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis. 43, 1003-1026 (2009).
Banas, Lubomir, and Nürnberg, Robert. “A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy”. ESAIM: Mathematical Modelling and Numerical Analysis 43.5 (2009): 1003-1026.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar