Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii

Banas L, Prohl A, Schätzle R (2010)
Numerische Mathematik 115(3): 395-432.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
We prove the existence of weak solutions to the harmonic map heat flow, and wave maps into spheres of nonconstant radii. Weak solutions are constructed as proper limits of iterates from a fully practical scheme based on lowest order conforming finite elements, where discrete Lagrange multipliers are employed to exactly meet the sphere constraint at mesh-points. Computational studies are included to motivate interesting dynamics in two and three spatial dimensions.
Erscheinungsjahr
Zeitschriftentitel
Numerische Mathematik
Band
115
Zeitschriftennummer
3
Seite
395-432
PUB-ID

Zitieren

Banas L, Prohl A, Schätzle R. Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numerische Mathematik. 2010;115(3):395-432.
Banas, L., Prohl, A., & Schätzle, R. (2010). Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numerische Mathematik, 115(3), 395-432. doi:10.1007/s00211-009-0282-y
Banas, L., Prohl, A., and Schätzle, R. (2010). Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numerische Mathematik 115, 395-432.
Banas, L., Prohl, A., & Schätzle, R., 2010. Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numerische Mathematik, 115(3), p 395-432.
L. Banas, A. Prohl, and R. Schätzle, “Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii”, Numerische Mathematik, vol. 115, 2010, pp. 395-432.
Banas, L., Prohl, A., Schätzle, R.: Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii. Numerische Mathematik. 115, 395-432 (2010).
Banas, Lubomir, Prohl, Andreas, and Schätzle, Reiner. “Finite element approximations of harmonic map heat flows and wave maps into spheres of nonconstant radii”. Numerische Mathematik 115.3 (2010): 395-432.