Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum

Ruwe M, Kalinowski J, Persicke M (2017)
Frontiers in Microbiology 8: 1601.

Download
OA 1.98 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
The hyperphosphorylated guanosine derivatives ppGpp and pppGpp represent global regulators of the bacterial stress response, as they act as central elements of the stringent response system. Although it was assumed that both, (p)ppGpp synthesis and hydrolysis, are catalyzed by one bifunctional RSH-protein in the actinobacterial model organism Corynebacterium glutamicum ATCC 13032, two putative short alarmone synthetases (SASs) were identified by bioinformatic analyses. The predicted sequences of both enzymes, designated as RelP*Cg and RelSCg, exhibit high similarities to the conserved (p)ppGpp synthetase catalytic domain. In the context of sequence analysis, significant differences were found between the RelP variants of different C. glutamicum isolates. In contrast to the bifunctional RelA/SpoT homolog (RSH) protein RelCg, whose gene deletion results in a reduced growth rate, no change in growth characteristics were observed for deletion mutants of the putative SAS proteins under standard growth conditions. The growth deficit of the Δrel strain could be restored by the additional deletion of the gene encoding RelSCg, which clearly indicates a functional relationship between both enzymes. The predicted pyrophosphokinase activity of RelSCg was demonstrated by means of genetic complementation of an Escherichia coli ΔrelAΔspoT strain. For the expression of RelP*Cg, as well as the slightly differing variant RelPCg from C. glutamicum AS1.542, no complementation was observed, concluding that both RelP versions possess no significant pyrophosphokinase activity in vivo. The results were confirmed by in vitro characterization of the corresponding proteins. In the course of this investigation, the additional conversion of GMP to pGpp was determined for the enzyme RelSCg. Since the SAS species analyzed extend both the network of stringent response related enzymes and the number of substances involved, the study of this class of enzymes is an important component in understanding the bacterial stress response. In addition to the comprehension of important biological processes, such as growth rate regulation and the survival of pathogenic species in the host organism, SAS enzymes can be used to produce novel hyperphosphorylated nucleotide species, such as pGpp.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Microbiology
Band
8
Artikelnummer
1601
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Ruwe M, Kalinowski J, Persicke M. Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Frontiers in Microbiology. 2017;8: 1601.
Ruwe, M., Kalinowski, J., & Persicke, M. (2017). Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Frontiers in Microbiology, 8, 1601. doi:10.3389/fmicb.2017.01601
Ruwe, M., Kalinowski, J., and Persicke, M. (2017). Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Frontiers in Microbiology 8:1601.
Ruwe, M., Kalinowski, J., & Persicke, M., 2017. Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Frontiers in Microbiology, 8: 1601.
M. Ruwe, J. Kalinowski, and M. Persicke, “Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum”, Frontiers in Microbiology, vol. 8, 2017, : 1601.
Ruwe, M., Kalinowski, J., Persicke, M.: Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum. Frontiers in Microbiology. 8, : 1601 (2017).
Ruwe, Matthias, Kalinowski, Jörn, and Persicke, Marcus. “Identification and Functional Characterization of Small Alarmone Synthetases in Corynebacterium glutamicum”. Frontiers in Microbiology 8 (2017): 1601.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-09-20T13:13:23Z

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

52 References

Daten bereitgestellt von Europe PubMed Central.

Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations.
Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M., J. Biol. Chem. 266(9), 1991
PMID: 2005134
Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R.
Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M., Microbiology (Reading, Engl.) 153(Pt 4), 2007
PMID: 17379713

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28871248
PubMed | Europe PMC

Suchen in

Google Scholar