Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy

Lauritsen JV, Foster AS, Olesen GH, Christensen MC, Kühnle A, Helveg S, Rostrup-Nielsen JR, Clausen BS, Reichling M, Besenbacher F (2006)
Nanotechnology 17(14): 3436-3441.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ;
Abstract
Atomic force microscopy in the non-contact mode (nc-AFM) can provide atom-resolved images of the surface of, in principle, any material independent of its conductivity. Due to the complex mechanisms involved in the contrast formation in nc-AFM imaging, it is, however, far from trivial to identify individual surface atoms or adsorbates from AFM images. In this work, we successfully demonstrate how to extract detailed information about defects and the chemical identity of adsorbates on a metal oxide surface from nc-AFM images. We make use of the observation that the apex of the AFM tip can be altered to expose either a positive or negative tip termination. The complementary set of images recorded with the two tip terminations unambiguously define the ionic sub-lattices and reveal the exact positions of oxygen vacancies and hydroxyl (OH) defects on a TiO2 surface. Chemical specificity is extracted by comparing the characteristic contrast patterns of the defects with results from comprehensive AFM simulations. Our methodology of analysis is generally applicable and may be pivotal for uncovering surface defects and adsorbates on other transition metal oxides designed for heterogeneous catalysis, photo-electrolysis or biocompatibility.
Publishing Year
ISSN
PUB-ID

Cite this

Lauritsen JV, Foster AS, Olesen GH, et al. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology. 2006;17(14):3436-3441.
Lauritsen, J. V., Foster, A. S., Olesen, G. H., Christensen, M. C., Kühnle, A., Helveg, S., Rostrup-Nielsen, J. R., et al. (2006). Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology, 17(14), 3436-3441. doi:10.1088/0957-4484/17/14/015
Lauritsen, J. V., Foster, A. S., Olesen, G. H., Christensen, M. C., Kühnle, A., Helveg, S., Rostrup-Nielsen, J. R., Clausen, B. S., Reichling, M., and Besenbacher, F. (2006). Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology 17, 3436-3441.
Lauritsen, J.V., et al., 2006. Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology, 17(14), p 3436-3441.
J.V. Lauritsen, et al., “Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy”, Nanotechnology, vol. 17, 2006, pp. 3436-3441.
Lauritsen, J.V., Foster, A.S., Olesen, G.H., Christensen, M.C., Kühnle, A., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., Reichling, M., Besenbacher, F.: Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy. Nanotechnology. 17, 3436-3441 (2006).
Lauritsen, Jeppe V., Foster, Adam S., Olesen, Georg H., Christensen, Mona C., Kühnle, Angelika, Helveg, Stig, Rostrup-Nielsen, Jens R., Clausen, Bjerne S., Reichling, Michael, and Besenbacher, Flemming. “Chemical identification of point defects and adsorbates on a metal oxide surface by atomic force microscopy”. Nanotechnology 17.14 (2006): 3436-3441.
This data publication is cited in the following publications:
This publication cites the following data publications:

16 Citations in Europe PMC

Data provided by Europe PubMed Central.

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy.
Freund S, Hinaut A, Marinakis N, Constable EC, Meyer E, Housecroft CE, Glatzel T., Beilstein J Nanotechnol 9(), 2018
PMID: 29441269
Characterization of individual molecular adsorption geometries by atomic force microscopy: Cu-TCPP on rutile TiO2 (110).
Johr R, Hinaut A, Pawlak R, Sadeghi A, Saha S, Goedecker S, Such B, Szymonski M, Meyer E, Glatzel T., J Chem Phys 143(9), 2015
PMID: 26342363
Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy.
Stetsovych O, Todorovic M, Shimizu TK, Moreno C, Ryan JW, Leon CP, Sagisaka K, Palomares E, Matolin V, Fujita D, Perez R, Custance O., Nat Commun 6(), 2015
PMID: 26118408
(2n × 1) Reconstructions of TiO2(011) Revealed by Noncontact Atomic Force Microscopy and Scanning Tunneling Microscopy.
Pang CL, Yurtsever A, Onoda J, Sugimoto Y, Thornton G., J Phys Chem C Nanomater Interfaces 118(40), 2014
PMID: 25309642
Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis.
Wirtz T, Fleming Y, Gerard M, Gysin U, Glatzel T, Meyer E, Wegmann U, Maier U, Odriozola AH, Uehli D., Rev Sci Instrum 83(6), 2012
PMID: 22755629
Single-molecule switching with non-contact atomic force microscopy.
Schutte J, Bechstein R, Rahe P, Langhals H, Rohlfing M, Kuhnle A., Nanotechnology 22(24), 2011
PMID: 21508456
Recent trends in surface characterization and chemistry with high-resolution scanning force methods.
Barth C, Foster AS, Henry CR, Shluger AL., Adv. Mater. Weinheim 23(4), 2011
PMID: 21254251
Understanding atomic-resolved STM images on TiO2(110)-(1 x 1) surface by DFT calculations.
Sanchez-Sanchez C, Gonzalez C, Jelinek P, Mendez J, de Andres PL, Martin-Gago JA, Lopez MF., Nanotechnology 21(40), 2010
PMID: 20823501
Unravelling the atomic structure of cross-linked (1 × 2) TiO2(110).
Pieper HH, Venkataramani K, Torbrugge S, Bahr S, Lauritsen JV, Besenbacher F, Kuhnle A, Reichling M., Phys Chem Chem Phys 12(39), 2010
PMID: 20714579
Three-dimensional atomic force microscopy - taking surface imaging to the next level.
Baykara MZ, Schwendemann TC, Altman EI, Schwarz UD., Adv. Mater. Weinheim 22(26-27), 2010
PMID: 20379997
NC-AFM imaging of the TiO(2)(110)-(1 x 1) surface at low temperature.
Yurtsever A, Sugimoto Y, Abe M, Morita S., Nanotechnology 21(16), 2010
PMID: 20348596
'All-inclusive' imaging of the rutile TiO(2)(110) surface using NC-AFM.
Bechstein R, Gonzalez C, Schutte J, Jelinek P, Perez R, Kuhnle A., Nanotechnology 20(50), 2009
PMID: 19923656
Nanofabrication of PTCDA molecular chains on rutile TiO(2)(011)-(2 × 1) surfaces.
Tekiel A, Godlewski S, Budzioch J, Szymonski M., Nanotechnology 19(49), 2008
PMID: 21730668
Chemical reactions on rutile TiO2(110).
Lun Pang C, Lindsay R, Thornton G., Chem Soc Rev 37(10), 2008
PMID: 18818830
Atomic scale Kelvin probe force microscopy studies of the surface potential variations on the TiO2(110) surface.
Enevoldsen GH, Glatzel T, Christensen MC, Lauritsen JV, Besenbacher F., Phys. Rev. Lett. 100(23), 2008
PMID: 18643521

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 19661587
PubMed | Europe PMC

Search this title in

Google Scholar