Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

Lübbe J, Temmen M, Rode S, Rahe P, Kühnle A, Reichling M (2013)
Beilstein Journal of Nanotechnology 4: 32-44.

Download
OA 1.48 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
The noise of the frequency-shift signal Delta f in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Delta f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured dz, we predict d(Delta f) for specific filter settings, a given level of detection-system noise spectral density d(ds)(z) and the cantilever-thermal-noise spectral density d(th)(z). We find an excellent agreement between the calculated and measured values for d(Delta f). Furthermore, we demonstrate that thermal noise in d(Delta f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.
Erscheinungsjahr
Zeitschriftentitel
Beilstein Journal of Nanotechnology
Band
4
Seite
32-44
ISSN
PUB-ID

Zitieren

Lübbe J, Temmen M, Rode S, Rahe P, Kühnle A, Reichling M. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology. 2013;4:32-44.
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., & Reichling, M. (2013). Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology, 4, 32-44. doi:10.3762/bjnano.4.4
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., and Reichling, M. (2013). Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology 4, 32-44.
Lübbe, J., et al., 2013. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology, 4, p 32-44.
J. Lübbe, et al., “Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy”, Beilstein Journal of Nanotechnology, vol. 4, 2013, pp. 32-44.
Lübbe, J., Temmen, M., Rode, S., Rahe, P., Kühnle, A., Reichling, M.: Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy. Beilstein Journal of Nanotechnology. 4, 32-44 (2013).
Lübbe, Jannis, Temmen, Matthias, Rode, Sebastian, Rahe, Philipp, Kühnle, Angelika, and Reichling, Michael. “Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy”. Beilstein Journal of Nanotechnology 4 (2013): 32-44.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-09-03T08:36:47Z

10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Understanding interferometry for micro-cantilever displacement detection.
von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 27547601
Noise in NC-AFM measurements with significant tip-sample interaction.
Lübbe J, Temmen M, Rahe P, Reichling M., Beilstein J Nanotechnol 7(), 2016
PMID: 28144538
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk K, Luchkin SY, Ivanov M, Kalinin A, Kholkin AL., Microsc Microanal 21(1), 2015
PMID: 25555020
Kelvin probe force microscopy for local characterisation of active nanoelectronic devices.
Wagner T, Beyer H, Reissner P, Mensch P, Riel H, Gotsmann B, Stemmer A., Beilstein J Nanotechnol 6(), 2015
PMID: 26734511
Noise performance of frequency modulation Kelvin force microscopy.
Diesinger H, Deresmes D, Mélin T., Beilstein J Nanotechnol 5(), 2014
PMID: 24455457
Determining cantilever stiffness from thermal noise.
Lübbe J, Temmen M, Rahe P, Kühnle A, Reichling M., Beilstein J Nanotechnol 4(), 2013
PMID: 23616942
Tuning molecular self-assembly on bulk insulator surfaces by anchoring of the organic building blocks.
Rahe P, Kittelmann M, Neff JL, Nimmrich M, Reichling M, Maass P, Kühnle A., Adv Mater 25(29), 2013
PMID: 23907708
Routes to rupture and folding of graphene on rough 6H-SiC(0001) and their identification.
Temmen M, Ochedowski O, Bussmann BK, Schleberger M, Reichling M, Bollmann TR., Beilstein J Nanotechnol 4(), 2013
PMID: 24205456

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23400758
PubMed | Europe PMC

Suchen in

Google Scholar