The Stokes and Poisson problem in variable exponent spaces

Diening L, Lengeler D, Růžička M (2011)
Complex Variables and Elliptic Equations. An International Journal 56(7-9): 789-811.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Abstract
We study the Stokes and Poisson problem in the context of variable exponent spaces. We prove the existence of strong and weak solutions for bounded domains with C^{1,1} boundary with inhomogenous boundary values. The result is based on generalizations of the classical theories of Calderon-Zygmund and Agmon-Douglis-Nirenberg to variable exponent spaces.
Publishing Year
ISSN
PUB-ID

Cite this

Diening L, Lengeler D, Růžička M. The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations. An International Journal. 2011;56(7-9):789-811.
Diening, L., Lengeler, D., & Růžička, M. (2011). The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations. An International Journal, 56(7-9), 789-811. doi:10.1080/17476933.2010.504843
Diening, L., Lengeler, D., and Růžička, M. (2011). The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations. An International Journal 56, 789-811.
Diening, L., Lengeler, D., & Růžička, M., 2011. The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations. An International Journal, 56(7-9), p 789-811.
L. Diening, D. Lengeler, and M. Růžička, “The Stokes and Poisson problem in variable exponent spaces”, Complex Variables and Elliptic Equations. An International Journal, vol. 56, 2011, pp. 789-811.
Diening, L., Lengeler, D., Růžička, M.: The Stokes and Poisson problem in variable exponent spaces. Complex Variables and Elliptic Equations. An International Journal. 56, 789-811 (2011).
Diening, Lars, Lengeler, Daniel, and Růžička, Michael. “The Stokes and Poisson problem in variable exponent spaces”. Complex Variables and Elliptic Equations. An International Journal 56.7-9 (2011): 789-811.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Sources

arXiv 1205.3287

Search this title in

Google Scholar