Highly efficient methane generation from untreated microalgae biomass

Klassen V, Blifernez-Klassen O, Wibberg D, Winkler A, Kalinowski J, Posten C, Kruse O (2017)
Biotechnology for Biofuels 10(1): 186.

Download
OA 2.05 MB
Journal Article | Original Article | Published | English
Abstract
Background The fact that microalgae perform very efficiently photosynthetic conversion of sunlight into chemical energy has moved them into the focus of regenerative fuel research. Especially, biogas generation via anaerobic digestion is economically attractive due to the comparably simple apparative process technology and the theoretical possibility of converting the entire algal biomass to biogas/methane. In the last 60 years, intensive research on biogas production from microalgae biomass has revealed the microalgae as a rather challenging substrate for anaerobic digestion due to its high cell wall recalcitrance and unfavorable protein content, which requires additional pretreatment and co-fermentation strategies for sufficient fermentation. However, sustainable fuel generation requires the avoidance of cost/energy intensive biomass pretreatments to achieve positive net-energy process balance. Results Cultivation of microalgae in replete and limited nitrogen culture media conditions has led to the formation of protein-rich and low protein biomass, respectively, with the last being especially optimal for continuous fermentation. Anaerobic digestion of nitrogen limited biomass (low-N BM) was characterized by a stable process with low levels of inhibitory substances and resulted in extraordinary high biogas, and subsequently methane productivity [750 ± 15 and 462 ± 9 mLN g−1 volatile solids (VS) day−1, respectively], thus corresponding to biomass-to-methane energy conversion efficiency of up to 84%. The microbial community structure within this highly efficient digester revealed a clear predominance of the phyla Bacteroidetes and the family Methanosaetaceae among the Bacteria and Archaea, respectively. The fermentation of replete nitrogen biomass (replete-N BM), on the contrary, was demonstrated to be less productive (131 ± 33 mLN CH4 g−1VS day−1) and failed completely due to acidosis, caused through high ammonia/ammonium concentrations. The organization of the microbial community of the failed (replete-N) digester differed greatly compared to the stable low-N digester, presenting a clear shift to the phyla Firmicutes and Thermotogae, and the archaeal population shifted from acetoclastic to hydrogenotrophic methanogenesis. Conclusions The present study underlines the importance of cultivation conditions and shows the practicability of microalgae biomass usage as mono-substrate for highly efficient continuous fermentation to methane without any pretreatment with almost maximum practically achievable energy conversion efficiency (biomass to methane).
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Klassen V, Blifernez-Klassen O, Wibberg D, et al. Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels. 2017;10(1):186.
Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., & Kruse, O. (2017). Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels, 10(1), 186. doi:10.1186/s13068-017-0871-4
Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., and Kruse, O. (2017). Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels 10, 186.
Klassen, V., et al., 2017. Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels, 10(1), p 186.
V. Klassen, et al., “Highly efficient methane generation from untreated microalgae biomass”, Biotechnology for Biofuels, vol. 10, 2017, pp. 186.
Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., Kruse, O.: Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels. 10, 186 (2017).
Klassen, Viktor, Blifernez-Klassen, Olga, Wibberg, Daniel, Winkler, Anika, Kalinowski, Jörn, Posten, Clemens, and Kruse, Olaf. “Highly efficient methane generation from untreated microalgae biomass”. Biotechnology for Biofuels 10.1 (2017): 186.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-08-22T12:34:47Z

This data publication is cited in the following publications:
This publication cites the following data publications:

81 References

Data provided by Europe PubMed Central.

DNA recovery from soils of diverse composition.
Zhou J, Bruns MA, Tiedje JM., Appl. Environ. Microbiol. 62(2), 1996
PMID: 8593035
Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO., Nucleic Acids Res. 41(1), 2013
PMID: 22933715
Taxonomic analysis of the microbial community in stored sugar beets using high-throughput sequencing of different marker genes.
Liebe S, Wibberg D, Winkler A, Puhler A, Schluter A, Varrelmann M., FEMS Microbiol. Ecol. 92(2), 2016
PMID: 26738557
FLASH: fast length adjustment of short reads to improve genome assemblies.
Magoc T, Salzberg SL., Bioinformatics 27(21), 2011
PMID: 21903629
Search and clustering orders of magnitude faster than BLAST.
Edgar RC., Bioinformatics 26(19), 2010
PMID: 20709691
Material in PUB:
Dissertation containing PUB record

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 28725266
PubMed | Europe PMC

Search this title in

Google Scholar