Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester

Krämer CEM, Singh A, Helfrich S, Grünberger A, Wiechert W, Nöh K, Kohlheyer D (2015)
PLoS one 10(10): e0141768.

Download
OA 4.48 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.
Erscheinungsjahr
Zeitschriftentitel
PLoS one
Band
10
Zeitschriftennummer
10
Artikelnummer
e0141768
ISBN
PUB-ID

Zitieren

Krämer CEM, Singh A, Helfrich S, et al. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one. 2015;10(10): e0141768.
Krämer, C. E. M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., & Kohlheyer, D. (2015). Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one, 10(10), e0141768. doi:10.1371/journal.pone.0141768
Krämer, C. E. M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., and Kohlheyer, D. (2015). Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one 10:e0141768.
Krämer, C.E.M., et al., 2015. Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one, 10(10): e0141768.
C.E.M. Krämer, et al., “Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester”, PLoS one, vol. 10, 2015, : e0141768.
Krämer, C.E.M., Singh, A., Helfrich, S., Grünberger, A., Wiechert, W., Nöh, K., Kohlheyer, D.: Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester. PLoS one. 10, : e0141768 (2015).
Krämer, Christina E. M., Singh, Abhijeet, Helfrich, Stefan, Grünberger, Alexander, Wiechert, Wolfgang, Nöh, Katharina, and Kohlheyer, Dietrich. “Non-Invasive Microbial Metabolic Activity Sensing at Single Cell Level by Perfusion of Calcein Acetoxymethyl Ester”. PLoS one 10.10 (2015): e0141768.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-07-11T10:06:34Z

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action.
Hendon-Dunn CL, Doris KS, Thomas SR, Allnutt JC, Marriott AA, Hatch KA, Watson RJ, Bottley G, Marsh PD, Taylor SC, Bacon J., Antimicrob Agents Chemother 60(7), 2016
PMID: 26902767

60 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1994

AUTHOR UNKNOWN, 1999
Metabolic activity of Corynebacterium glutamicum grown on L: -lactic acid under stress.
Seletzky JM, Noack U, Fricke J, Hahn S, Buchs J., Appl. Microbiol. Biotechnol. 72(6), 2006
PMID: 16642330
Measuring the Stiffness of Bacterial Cells from Growth Rates in Hydrogels of Tunable Elasticity
AUTHOR UNKNOWN, 2012
Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria
AUTHOR UNKNOWN, 2015
Versatile, fully automated, microfluidic cell culture system.
Gomez-Sjoberg R, Leyrat AA, Pirone DM, Chen CS, Quake SR., Anal. Chem. 79(22), 2007
PMID: 17953452
Applications and advances of metabolite biosensors for metabolic engineering
AUTHOR UNKNOWN, 2015
Analysis of Bacterial Function by Multi-Colour Fluorescence Flow Cytometry and Single Cell Sorting
AUTHOR UNKNOWN, 2000
Recent advances in the development of synthetic chemical probes for glycosidase enzymes
AUTHOR UNKNOWN, 2015
Enzymatic substrates in microbiology.
Orenga S, James AL, Manafi M, Perry JD, Pincus DH., J. Microbiol. Methods 79(2), 2009
PMID: 19679151
Membrane Properties of Living Mammalian Cells As Studied by Enzymatic Hydrolysis of Fluorogenic Esters
AUTHOR UNKNOWN, 1965

AUTHOR UNKNOWN, 0
The microfluidic multitrap nanophysiometer for hematologic cancer cell characterization reveals temporal sensitivity of the calcein-AM efflux assay
AUTHOR UNKNOWN, 2014
Static and dynamic acute cytotoxicity assays on microfluidic devices.
Poulsen CR, Culbertson CT, Jacobson SC, Ramsey JM., Anal. Chem. 77(2), 2005
PMID: 15649069
CARE-LASS (calcein-release-assay), an improved fluorescence-based test system to measure cytotoxic T lymphocyte activity.
Lichtenfels R, Biddison WE, Schulz H, Vogt AB, Martin R., J. Immunol. Methods 172(2), 1994
PMID: 7518485
The use of fluorogenic esters to detect viable bacteria by flow cytometry
AUTHOR UNKNOWN, 1994
Enumeration, viability and heterogeneity in Staphylococcus aureus cultures by flow cytometry
AUTHOR UNKNOWN, 1998
Microbial analysis at the single-cell level : tasks and techniques
AUTHOR UNKNOWN, 2000
Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices
AUTHOR UNKNOWN, 2015
Rate of environmental change determines stress response specificity.
Young JW, Locke JC, Elowitz MB., Proc. Natl. Acad. Sci. U.S.A. 110(10), 2013
PMID: 23407164
Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them
AUTHOR UNKNOWN, 2015
Mycobacterium tuberculosis: success through dormancy.
Gengenbacher M, Kaufmann SH., FEMS Microbiol. Rev. 36(3), 2012
PMID: 22320122
Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform
AUTHOR UNKNOWN, 2015
Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level
AUTHOR UNKNOWN, 2015
Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D., J Vis Exp (82), 2013
PMID: 24336165
Isoleucine Synthesis in Corynebacterium glutamicum: Molecular Analysis of the ilvB-ilvN-ilvC Operon
AUTHOR UNKNOWN, 1993
NIH Image to ImageJ: 25 years of image analysis
AUTHOR UNKNOWN, 2012
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772

AUTHOR UNKNOWN, 2015
Ultrastructure of the Corynebacterium glutamicum cell wall.
Marienfeld S, Uhlemann EM, Schmid R, Kramer R, Burkovski A., Antonie Van Leeuwenhoek 72(4), 1997
PMID: 9442270
Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis
AUTHOR UNKNOWN, 2009
Bacterial responses to photo-oxidative stress.
Ziegelhoffer EC, Donohue TJ., Nat. Rev. Microbiol. 7(12), 2009
PMID: 19881522
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Unthan S, Grunberger A, van Ooyen J, Gatgens J, Heinrich J, Paczia N, Wiechert W, Kohlheyer D, Noack S., Biotechnol. Bioeng. 111(2), 2013
PMID: 23996851
Boosting bacterial metabolism to combat antibiotic resistance.
Bhargava P, Collins JJ., Cell Metab. 21(2), 2015
PMID: 25651168
Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria.
Peng B, Su YB, Li H, Han Y, Guo C, Tian YM, Peng XX., Cell Metab. 21(2), 2015
PMID: 25651179
Rapid cytolysis of Mycobacterium tuberculosis by faropenem, an orally bioavailable β-lactam antibiotic.
Dhar N, Dubee V, Ballell L, Cuinet G, Hugonnet JE, Signorino-Gelo F, Barros D, Arthur M, McKinney JD., Antimicrob. Agents Chemother. 59(2), 2014
PMID: 25421469

AUTHOR UNKNOWN, 2015
Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications
AUTHOR UNKNOWN, 2015
Rapid and specific SPRi detection of L. pneumophila in complex environmental water samples.
Foudeh AM, Trigui H, Mendis N, Faucher SP, Veres T, Tabrizian M., Anal Bioanal Chem 407(18), 2015
PMID: 25935681
Detecting virulence and drug-resistance mycobacterial phenotypes in vivo
AUTHOR UNKNOWN, 2015
Cultivation-independent Assessment of Bacterial Viability
AUTHOR UNKNOWN, 2011
Bacterial luciferase reporters: the Swiss army knife of molecular biology.
Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU., Bioeng Bugs 2(1), 2011
PMID: 21636983
Toxic effects on bacterial metabolism of the redox dye 5-cyano-2,3-ditolyl tetrazolium chloride.
Ullrich S, Karrasch B, Hoppe H, Jeskulke K, Mehrens M., Appl. Environ. Microbiol. 62(12), 1996
PMID: 16535471
Requirement of Chelating Compounds for the Growth of Corynebacterium glutamicum in Synthetic Media
AUTHOR UNKNOWN, 1989
Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum.
Dertz EA, Stintzi A, Raymond KN., J. Biol. Inorg. Chem. 11(8), 2006
PMID: 16912897
Wake up! Peptidoglycan lysis and bacterial non-growth states.
Keep NH, Ward JM, Cohen-Gonsaud M, Henderson B., Trends Microbiol. 14(6), 2006
PMID: 16675219

AUTHOR UNKNOWN, 1998
Mapping the membrane proteome of Corynebacterium glutamicum.
Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A., Proteomics 5(5), 2005
PMID: 15717325
Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism
AUTHOR UNKNOWN, 2015

AUTHOR UNKNOWN, 2014

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26513257
PubMed | Europe PMC

Suchen in

Google Scholar
ISBN Suche