Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression

Binder D, Bier C, Grünberger A, Drobietz D, Hage-Hülsmann J, rey G, Büchs J, Kohlheyer D, Loeschcke A, Wiechert W, Jaeger K-E, et al. (2016)
ChemBioChem 17(4): 296-299.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Controlling cellular functions by light allows simple triggering of biological processes in a non-invasive fashion with high spatiotemporal resolution. In this context, light-regulated gene expression has enormous potential for achieving optogenetic control over almost any cellular process. Here, we report on two novel one-step cleavable photocaged arabinose compounds, which were applied as light-sensitive inducers of transcription in bacteria. Exposure of caged arabinose to UV-A light resulted in rapid activation of protein production, as demonstrated for GFP and the complete violacein biosynthetic pathway. Moreover, single-cell analysis revealed that intrinsic heterogeneity of arabinose-mediated induction of gene expression was overcome when using photocaged arabinose. We have thus established a novel phototrigger for synthetic bio(techno)logy applications that enables precise and homogeneous control of bacterial target gene expression.
Erscheinungsjahr
Zeitschriftentitel
ChemBioChem
Band
17
Zeitschriftennummer
4
Seite
296-299
ISSN
PUB-ID

Zitieren

Binder D, Bier C, Grünberger A, et al. Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem. 2016;17(4):296-299.
Binder, D., Bier, C., Grünberger, A., Drobietz, D., Hage-Hülsmann, J., rey, G., Büchs, J., et al. (2016). Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem, 17(4), 296-299. doi:10.1002/cbic.201500609
Binder, D., Bier, C., Grünberger, A., Drobietz, D., Hage-Hülsmann, J., rey, G., Büchs, J., Kohlheyer, D., Loeschcke, A., Wiechert, W., et al. (2016). Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem 17, 296-299.
Binder, D., et al., 2016. Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem, 17(4), p 296-299.
D. Binder, et al., “Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression”, ChemBioChem, vol. 17, 2016, pp. 296-299.
Binder, D., Bier, C., Grünberger, A., Drobietz, D., Hage-Hülsmann, J., rey, G., Büchs, J., Kohlheyer, D., Loeschcke, A., Wiechert, W., Jaeger, K.-E., Pietruszka, J., Drepper, T.: Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem. 17, 296-299 (2016).
Binder, Dennis, Bier, Claus, Grünberger, Alexander, Drobietz, Dagmar, Hage-Hülsmann, Jennifer, rey, Georg, Büchs, Jochen, Kohlheyer, Dietrich, Loeschcke, Anita, Wiechert, Wolfgang, Jaeger, Karl-Erich, Pietruszka, Jörg, and Drepper, Thomas. “Photocaged Arabinose - A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression”. ChemBioChem 17.4 (2016): 296-299.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Toward Light-Regulated Living Biomaterials.
Sankaran S, Zhao S, Muth C, Paez J, Del Campo A., Adv Sci (Weinh) 5(8), 2018
PMID: 30128245
Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
Pérez-García F, Wendisch VF., FEMS Microbiol Lett 365(16), 2018
PMID: 29982619
Light-controlled gene expression in yeast using photocaged Cu2.
Kusen PM, Wandrey G, Krewald V, Holz M, Berstenhorst SMZ, Büchs J, Pietruszka J., J Biotechnol 258(), 2017
PMID: 28455204
Production of amino acids - Genetic and metabolic engineering approaches.
Lee JH, Wendisch VF., Bioresour Technol 245(pt b), 2017
PMID: 28552565
Taking control over microbial populations: Current approaches for exploiting biological noise in bioprocesses.
Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C., Biotechnol J 12(7), 2017
PMID: 28544731
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder D, Drepper T, Jaeger KE, Delvigne F, Wiechert W, Kohlheyer D, Grünberger A., Metab Eng 42(), 2017
PMID: 28645641
Rapid generation of recombinant Pseudomonas putida secondary metabolite producers using yTREX.
Domröse A, Weihmann R, Thies S, Jaeger KE, Drepper T, Loeschcke A., Synth Syst Biotechnol 2(4), 2017
PMID: 29552656
Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation.
Binder D, Probst C, Grünberger A, Hilgers F, Loeschcke A, Jaeger KE, Kohlheyer D, Drepper T., PLoS One 11(8), 2016
PMID: 27525986
Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β-d-Thiogalactopyranoside for Light-Mediated Optimization of lac Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum.
Binder D, Frohwitter J, Mahr R, Bier C, Grünberger A, Loeschcke A, Peters-Wendisch P, Kohlheyer D, Pietruszka J, Frunzke J, Jaeger KE, Wendisch VF, Drepper T., Appl Environ Microbiol 82(20), 2016
PMID: 27520809
Photocages for protection and controlled release of bioactive compounds.
Aparici-Espert I, Cuquerella MC, Paris C, Lhiaubet-Vallet V, Miranda MA., Chem Commun (Camb) 52(99), 2016
PMID: 27847958

48 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Light-controlled tools.
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A., Angew. Chem. Int. Ed. Engl. 51(34), 2012
PMID: 22829531

AUTHOR UNKNOWN, Angew. Chem. 124(), 2012
Lights on and action! Controlling microbial gene expression by light.
Drepper T, Krauss U, Meyer zu Berstenhorst S, Pietruszka J, Jaeger KE., Appl. Microbiol. Biotechnol. 90(1), 2011
PMID: 21336931
Light-controlled synthetic gene circuits.
Gardner L, Deiters A., Curr Opin Chem Biol 16(3-4), 2012
PMID: 22633822
Light activation as a method of regulating and studying gene expression.
Deiters A., Curr Opin Chem Biol 13(5-6), 2009
PMID: 19857985

AUTHOR UNKNOWN, 0
Multichromatic control of gene expression in Escherichia coli.
Tabor JJ, Levskaya A, Voigt CA., J. Mol. Biol. 405(2), 2010
PMID: 21035461
From dusk till dawn: one-plasmid systems for light-regulated gene expression.
Ohlendorf R, Vidavski RR, Eldar A, Moffat K, Moglich A., J. Mol. Biol. 416(4), 2012
PMID: 22245580

AUTHOR UNKNOWN, 0
A caged doxycycline analogue for photoactivated gene expression.
Cambridge SB, Geissler D, Keller S, Curten B., Angew. Chem. Int. Ed. Engl. 45(14), 2006
PMID: 16506298

AUTHOR UNKNOWN, Angew. Chem. 118(), 2006
Doxycycline-dependent photoactivated gene expression in eukaryotic systems.
Cambridge SB, Geissler D, Calegari F, Anastassiadis K, Hasan MT, Stewart AF, Huttner WB, Hagen V, Bonhoeffer T., Nat. Methods 6(7), 2009
PMID: 19503080

AUTHOR UNKNOWN, 0
Optical control of antibacterial activity.
Velema WA, van der Berg JP, Hansen MJ, Szymanski W, Driessen AJ, Feringa BL., Nat Chem 5(11), 2013
PMID: 24153369
Orthogonal control of antibacterial activity with light.
Velema WA, van der Berg JP, Szymanski W, Driessen AJ, Feringa BL., ACS Chem. Biol. 9(9), 2014
PMID: 25055227
Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides.
Yamazoe S, Liu Q, McQuade LE, Deiters A, Chen JK., Angew. Chem. Int. Ed. Engl. 53(38), 2014
PMID: 25130695

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014
Site-specific promoter caging enables optochemical gene activation in cells and animals.
Hemphill J, Govan J, Uprety R, Tsang M, Deiters A., J. Am. Chem. Soc. 136(19), 2014
PMID: 24802207

AUTHOR UNKNOWN, 0
Photochemical activation of protein expression in bacterial cells.
Young DD, Deiters A., Angew. Chem. Int. Ed. Engl. 46(23), 2007
PMID: 17458846

AUTHOR UNKNOWN, Angew. Chem. 119(), 2007
Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
Binder D, Grunberger A, Loeschcke A, Probst C, Bier C, Pietruszka J, Wiechert W, Kohlheyer D, Jaeger KE, Drepper T., Integr Biol (Camb) 6(8), 2014
PMID: 24894989
Intracellular light-activation of riboswitch activity.
Walsh S, Gardner L, Deiters A, Williams GJ., Chembiochem 15(9), 2014
PMID: 24861567
Photochemical hammerhead ribozyme activation.
Young DD, Deiters A., Bioorg. Med. Chem. Lett. 16(10), 2006
PMID: 16513347
Photoprocesses of molecules with 2-nitrobenzyl protecting groups and caged organic acids.
Bley F, Schaper K, Gorner H., Photochem. Photobiol. 84(1), 2008
PMID: 18173716

AUTHOR UNKNOWN, 0
Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
Guzman LM, Belin D, Carson MJ, Beckwith J., J. Bacteriol. 177(14), 1995
PMID: 7608087
Positively regulated bacterial expression systems.
Brautaset T, Lale R, Valla S., Microb Biotechnol 2(1), 2008
PMID: 21261879
A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli.
Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S., Microb. Cell Fact. 12(), 2013
PMID: 23506076
Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters.
Lee SK, Chou HH, Pfleger BF, Newman JD, Yoshikuni Y, Keasling JD., Appl. Environ. Microbiol. 73(18), 2007
PMID: 17644634
FACS-optimized mutants of the green fluorescent protein (GFP).
Cormack BP, Valdivia RH, Falkow S., Gene 173(1 Spec No), 1996
PMID: 8707053
Single-cell microfluidics: opportunity for bioprocess development.
Grunberger A, Wiechert W, Kohlheyer D., Curr. Opin. Biotechnol. 29(), 2014
PMID: 24642389

AUTHOR UNKNOWN, 0
In vivo single-molecule kinetics of activation and subsequent activity of the arabinose promoter.
Makela J, Kandhavelu M, Oliveira SM, Chandraseelan JG, Lloyd-Price J, Peltonen J, Yli-Harja O, Ribeiro AS., Nucleic Acids Res. 41(13), 2013
PMID: 23644285
Single cell kinetics of phenotypic switching in the arabinose utilization system of E. coli.
Fritz G, Megerle JA, Westermayer SA, Brick D, Heermann R, Jung K, Radler JO, Gerland U., PLoS ONE 9(2), 2014
PMID: 24586851
Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture.
Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD., J. Bacteriol. 182(24), 2000
PMID: 11092865
Unexpected applications of secondary metabolites.
Vaishnav P, Demain AL., Biotechnol. Adv. 29(2), 2010
PMID: 21130862
N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472.
Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T., FEMS Microbiol. Lett. 279(1), 2008
PMID: 18177311

AUTHOR UNKNOWN, 0
Positively regulated expression of the Escherichia coli araBAD promoter in Corynebacterium glutamicum.
Ben-Samoun K, Leblon G, Reyes O., FEMS Microbiol. Lett. 174(1), 1999
PMID: 10234830
A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum.
Zhang J, Liu YJ, Cui GZ, Cui Q., Biotechnol Biofuels 8(), 2015
PMID: 25763107
Simple "on-demand" production of bioactive natural products.
Bode E, Brachmann AO, Kegler C, Simsek R, Dauth C, Zhou Q, Kaiser M, Klemmt P, Bode HB., Chembiochem 16(7), 2015
PMID: 25826784
A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus.
Peng N, Deng L, Mei Y, Jiang D, Hu Y, Awayez M, Liang Y, She Q., Appl. Environ. Microbiol. 78(16), 2012
PMID: 22660711
Isolation of a carbon source-regulated gene from Ustilago maydis.
Bottin A, Kamper J, Kahmann R., Mol. Gen. Genet. 253(3), 1996
PMID: 9003321
Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms.
Medema MH, Breitling R, Bovenberg R, Takano E., Nat. Rev. Microbiol. 9(2), 2010
PMID: 21189477
Frontiers of optofluidics in synthetic biology.
Tan C, Lo SJ, LeDuc PR, Cheng CM., Lab Chip 12(19), 2012
PMID: 22895798

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26677142
PubMed | Europe PMC

Suchen in

Google Scholar