Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions

Otlyotov AA, Lamm J-H, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV (2017)
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19(20): 13093-13100.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ;
Abstract
The gas-phase structure of 1,8-bis[(trimethylsilyl) ethynyl]anthracene (1,8-BTMSA) was determined by a combined gas electron diffraction (GED)/mass spectrometry (MS) experiment as well as by quantum-chemical calculations (QC). DFT and dispersion corrected DFT calculations (DFT-D3) predicted two slightly different structures for 1,8-BTMSA concerning the mutual orientation of the two -C-C C-SiMe3 units: away from one another or both bent to the same side. An attempt was made to distinguish these structures by GED structural analysis. To probe the structural rigidity, a set of Born-Oppenheimer molecular dynamics (BOMD) calculations has been performed at the DFT-D level. Vibrational corrections Delta r = r(a) - r(e) were calculated by two BOMD approaches: a microcanonically (NVE) sampled ensemble of 20 trajectories (BOMD(NVE)) and a canonical (NVT) trajectory thermostated by the Noose-Hoover algorithm (BOMD(NVT)). In addition, the conventional approach with both, rectilinear and curvilinear approximations (SHRINK program), was also applied. Radial distribution curves obtained with models using both MD approaches provide a better description of the experimental data than those obtained using the rectilinear (SHRINK) approximation, while the curvilinear approach turned out to lead to physically inacceptable results. The electronic structure of 1,8-BTMSA was investigated in terms of an NBO analysis and was compared with that of the earlier studied 1,8-bis(phenylethynyl) anthracene. Theoretical and experimental results lead to the conclusion that the (trimethylsilyl) ethynyl (TMSE) groups in 1,8-BTMSA are neither restricted in rotation nor in bending at the temperature of the GED experiment.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Otlyotov AA, Lamm J-H, Blomeyer S, et al. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2017;19(20):13093-13100.
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., et al. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), 13093-13100. doi:10.1039/c7cp01781b
Otlyotov, A. A., Lamm, J. - H., Blomeyer, S., Mitzel, N. W., Rybkin, V. V., Zhabanov, Y. A., Tverdova, N. V., Giricheva, N. I., and Girichev, G. V. (2017). Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19, 13093-13100.
Otlyotov, A.A., et al., 2017. Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 19(20), p 13093-13100.
A.A. Otlyotov, et al., “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 19, 2017, pp. 13093-13100.
Otlyotov, A.A., Lamm, J.-H., Blomeyer, S., Mitzel, N.W., Rybkin, V.V., Zhabanov, Y.A., Tverdova, N.V., Giricheva, N.I., Girichev, G.V.: Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 19, 13093-13100 (2017).
Otlyotov, Arseniy A., Lamm, Jan-Hendrik, Blomeyer, Sebastian, Mitzel, Norbert W., Rybkin, Vladimir V., Zhabanov, Yuriy A., Tverdova, Natalya V., Giricheva, Nina I., and Girichev, Georgiy V. “Gas-phase structure of 1,8-bis[(trimethylsilyl)ethynyl]anthracene: cog-wheel-type vs. independent internal rotation and influence of dispersion interactions”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 19.20 (2017): 13093-13100.
This data publication is cited in the following publications:
This publication cites the following data publications:
Material in PUB:
Dissertation containing PUB record

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 28485433
PubMed | Europe PMC

Search this title in

Google Scholar