Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces

Paaßen B, Göpfert C, Hammer B (2017)
Neural Processing Letters: 1-21.

Journal Article | Original Article | Epub ahead of print | English

No fulltext has been uploaded

Abstract / Notes
Graphs are a flexible and general formalism providing rich models in various important domains, such as distributed computing, intelligent tutoring systems or social network analysis. In many cases, such models need to take changes in the graph structure into account, that is, changes in the number of nodes or in the graph connectivity. Predicting such changes within graphs can be expected to yield important insight with respect to the underlying dynamics, e.g. with respect to user behaviour. However, predictive techniques in the past have almost exclusively focused on single edges or nodes. In this contribution, we attempt to predict the future state of a graph as a whole. We propose to phrase time series prediction as a regression problem and apply dissimilarity- or kernel-based regression techniques, such as 1-nearest neighbor, kernel regression and Gaussian process regression, which can be applied to graphs via graph kernels. The output of the regression is a point embedded in a pseudo-Euclidean space, which can be analyzed using subsequent dissimilarity- or kernel-based processing methods. We discuss strategies to speed up Gaussian Processes regression from cubic to linear time and evaluate our approach on two well-established theoretical models of graph evolution as well as two real data sets from the domain of intelligent tutoring systems. We find that simple regression methods, such as kernel regression, are sufficient to capture the dynamics in the theoretical models, but that Gaussian process regression significantly improves the prediction error for real-world data.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Paaßen B, Göpfert C, Hammer B. Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters. 2017:1-21.
Paaßen, B., Göpfert, C., & Hammer, B. (2017). Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters, 1-21. doi:10.1007/s11063-017-9684-5
Paaßen, B., Göpfert, C., and Hammer, B. (2017). Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters, 1-21.
Paaßen, B., Göpfert, C., & Hammer, B., 2017. Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters, , p 1-21.
B. Paaßen, C. Göpfert, and B. Hammer, “Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces”, Neural Processing Letters, 2017, pp. 1-21.
Paaßen, B., Göpfert, C., Hammer, B.: Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces. Neural Processing Letters. 1-21 (2017).
Paaßen, Benjamin, Göpfert, Christina, and Hammer, Barbara. “Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces”. Neural Processing Letters (2017): 1-21.
This data publication is cited in the following publications:
This publication cites the following data publications:
Material in PUB:
Popular Science
External Research Data:
Description
MiniPalindrome Dataset
Description
Sorting Dataset

Export

0 Marked Publications

Open Data PUB

Sources

arXiv 1704.06498

Search this title in

Google Scholar