RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome

Köster T, Marondedze C, Meyer K, Staiger D (2017)
Trends in Plant Science 22(6): 512-526.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
Trends in Plant Science
Band
22
Zeitschriftennummer
6
Seite
512-526
ISSN
PUB-ID

Zitieren

Köster T, Marondedze C, Meyer K, Staiger D. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome. Trends in Plant Science. 2017;22(6):512-526.
Köster, T., Marondedze, C., Meyer, K., & Staiger, D. (2017). RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome. Trends in Plant Science, 22(6), 512-526. doi:10.1016/j.tplants.2017.03.009
Köster, T., Marondedze, C., Meyer, K., and Staiger, D. (2017). RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome. Trends in Plant Science 22, 512-526.
Köster, T., et al., 2017. RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome. Trends in Plant Science, 22(6), p 512-526.
T. Köster, et al., “RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome”, Trends in Plant Science, vol. 22, 2017, pp. 512-526.
Köster, T., Marondedze, C., Meyer, K., Staiger, D.: RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome. Trends in Plant Science. 22, 512-526 (2017).
Köster, Tino, Marondedze, Claudius, Meyer, Katja, and Staiger, Dorothee. “RNA-Binding Proteins Revisited – The Emerging Arabidopsis mRNA Interactome”. Trends in Plant Science 22.6 (2017): 512-526.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

ALY RNA-Binding Proteins Are Required for Nucleocytosolic mRNA Transport and Modulate Plant Growth and Development.
Pfaff C, Ehrnsberger HF, Flores-Tornero M, Sørensen BB, Schubert T, Längst G, Griesenbeck J, Sprunck S, Grasser M, Grasser KD., Plant Physiol 177(1), 2018
PMID: 29540591
RNA-protein interactions in an unstructured context.
Zagrovic B, Bartonek L, Polyansky AA., FEBS Lett 592(17), 2018
PMID: 29851074
PTBP3 splicing factor promotes hepatocellular carcinoma by destroying the splicing balance of NEAT1 and pre-miR-612.
Yang X, Qu S, Wang L, Zhang H, Yang Z, Wang J, Dai B, Tao K, Shang R, Liu Z, Li X, Zhang Z, Xia C, Ma B, Liu W, Li H, Dou K., Oncogene (), 2018
PMID: 30068940
Plant RNA Interactome Capture: Revealing the Plant RBPome.
Bach-Pages M, Castello A, Preston GM., Trends Plant Sci 22(6), 2017
PMID: 28478905
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Regulation of flowering time: a splicy business.
Melzer R., J Exp Bot 68(18), 2017
PMID: 29106624

105 References

Daten bereitgestellt von Europe PubMed Central.

Principles and properties of eukaryotic mRNPs.
Mitchell SF, Parker R., Mol. Cell 54(4), 2014
PMID: 24856220
The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion.
Singh G, Pratt G, Yeo GW, Moore MJ., Annu. Rev. Biochem. 84(), 2015
PMID: 25784054
RNA-binding proteins in Mendelian disease.
Castello A, Fischer B, Hentze MW, Preiss T., Trends Genet. 29(5), 2013
PMID: 23415593
Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes.
Shukla S, Parker R., Trends Mol Med 22(7), 2016
PMID: 27263464
Roles for RNA-binding proteins in development and disease.
Brinegar AE, Cooper TA., Brain Res. 1647(), 2016
PMID: 26972534
Pentatricopeptide repeat proteins: a socket set for organelle gene expression.
Schmitz-Linneweber C, Small I., Trends Plant Sci. 13(12), 2008
PMID: 19004664
A census of human RNA-binding proteins.
Gerstberger S, Hafner M, Tuschl T., Nat. Rev. Genet. 15(12), 2014
PMID: 25365966
Pumilio Puf domain RNA-binding proteins in Arabidopsis.
Abbasi N, Park YI, Choi SB., Plant Signal Behav 6(3), 2011
PMID: 21350339
Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays.
Tenenbaum SA, Carson CC, Lager PJ, Keene JD., Proc. Natl. Acad. Sci. U.S.A. 97(26), 2000
PMID: 11121017
iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution.
Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J., Nat. Struct. Mol. Biol. 17(7), 2010
PMID: 20601959
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T., Cell 141(1), 2010
PMID: 20371350
Ribonomic approaches to study the RNA-binding proteome.
Faoro C, Ataide SF., FEBS Lett. 588(20), 2014
PMID: 25150170
Unbiased RNA-protein interaction screen by quantitative proteomics.
Butter F, Scheibe M, Morl M, Mann M., Proc. Natl. Acad. Sci. U.S.A. 106(26), 2009
PMID: 19541640
Mutations that increase the affinity of a translational repressor for RNA.
Lim F, Peabody DS., Nucleic Acids Res. 22(18), 1994
PMID: 7937087
Identification of lncRNA MEG3 Binding Protein Using MS2-Tagged RNA Affinity Purification and Mass Spectrometry.
Liu S, Zhu J, Jiang T, Zhong Y, Tie Y, Wu Y, Zheng X, Jin Y, Fu H., Appl. Biochem. Biotechnol. 176(7), 2015
PMID: 26155902
The Conservation and Function of RNA Secondary Structure in Plants.
Vandivier LE, Anderson SJ, Foley SW, Gregory BD., Annu Rev Plant Biol 67(), 2016
PMID: 26865341
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, Krijgsveld J, Hentze MW., Cell 149(6), 2012
PMID: 22658674
The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.
Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M., Mol. Cell 46(5), 2012
PMID: 22681889
Emerging Roles of Disordered Sequences in RNA-Binding Proteins.
Calabretta S, Richard S., Trends Biochem. Sci. 40(11), 2015
PMID: 26481498
Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels.
Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL., Cell 149(4), 2012
PMID: 22579281
Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies.
Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, Chen M, Xie Y, Allen J, Xiao G, McKnight SL., Cell 149(4), 2012
PMID: 22579282
Principles and Properties of Stress Granules.
Protter DSW, Parker R., Trends Cell Biol. 26(9), 2016
PMID: 27289443
The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs.
Beckmann BM, Horos R, Fischer B, Castello A, Eichelbaum K, Alleaume AM, Schwarzl T, Curk T, Foehr S, Huber W, Krijgsveld J, Hentze MW., Nat Commun 6(), 2015
PMID: 26632259
The REM phase of gene regulation.
Hentze MW, Preiss T., Trends Biochem. Sci. 35(8), 2010
PMID: 20554447
Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins.
Castello A, Hentze MW, Preiss T., Trends Endocrinol. Metab. 26(12), 2015
PMID: 26520658
Conserved mRNA-binding proteomes in eukaryotic organisms.
Matia-Gonzalez AM, Laing EE, Gerber AP., Nat. Struct. Mol. Biol. 22(12), 2015
PMID: 26595419
Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila.
Sysoev VO, Fischer B, Frese CK, Gupta I, Krijgsveld J, Hentze MW, Castello A, Ephrussi A., Nat Commun 7(), 2016
PMID: 27378189
The mRNA-bound proteome of the early fly embryo.
Wessels HH, Imami K, Baltz AG, Kolinski M, Beldovskaya A, Selbach M, Small S, Ohler U, Landthaler M., Genome Res. 26(7), 2016
PMID: 27197210
The RNA-binding protein repertoire of Arabidopsis thaliana.
Marondedze C, Thomas L, Serrano NL, Lilley KS, Gehring C., Sci Rep 6(), 2016
PMID: 27405932
In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings.
Reichel M, Liao Y, Rettel M, Ragan C, Evers M, Alleaume AM, Horos R, Hentze MW, Preiss T, Millar AA., Plant Cell 28(10), 2016
PMID: 27729395
UV crosslinked mRNA-binding proteins captured from leaf mesophyll protoplasts.
Zhang Z, Boonen K, Ferrari P, Schoofs L, Janssens E, van Noort V, Rolland F, Geuten K., Plant Methods 12(), 2016
PMID: 27822292
Transcriptional and post-transcriptional control of the plant circadian gene regulatory network
Hernando, Biochim. Biophys. Acta 1860(), 2017
FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs.
Schomburg FM, Patton DA, Meinke DW, Amasino RM., Plant Cell 13(6), 2001
PMID: 11402170
The Arabidopsis RNA-binding protein FCA requires a lysine-specific demethylase 1 homolog to downregulate FLC.
Liu F, Quesada V, Crevillen P, Baurle I, Swiezewski S, Dean C., Mol. Cell 28(3), 2007
PMID: 17996704
Abscisic acid (ABA) regulation of Arabidopsis SR protein gene expression.
Cruz TM, Carvalho RF, Richardson DN, Duque P., Int J Mol Sci 15(10), 2014
PMID: 25268622
A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis.
Qi Y, Tsuda K, Joe A, Sato M, Nguyen le V, Glazebrook J, Alfano JR, Cohen JD, Katagiri F., Mol. Plant Microbe Interact. 23(12), 2010
PMID: 20636102
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J. 32(5), 2013
PMID: 23395902
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Koster T, Wiedenlubbert M, Muller C, Staiger D., Plant Cell Environ. 37(3), 2013
PMID: 23961939
The RNA-binding protein FPA regulates flg22-triggered defense responses and transcription factor activity by alternative polyadenylation.
Lyons R, Iwase A, Gansewig T, Sherstnev A, Duc C, Barton GJ, Hanada K, Higuchi-Takeuchi M, Matsui M, Sugimoto K, Kazan K, Simpson GG, Shirasu K., Sci Rep 3(), 2013
PMID: 24104185
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 356(1415), 2001
PMID: 11710982
Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana.
Kim MH, Sasaki K, Imai R., J. Biol. Chem. 284(35), 2009
PMID: 19556243
Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response.
Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K., Nucleic Acids Res. 40(12), 2012
PMID: 22379136
The Arabidopsis SR45 Splicing Factor, a Negative Regulator of Sugar Signaling, Modulates SNF1-Related Protein Kinase 1 Stability.
Carvalho RF, Szakonyi D, Simpson CG, Barbosa IC, Brown JW, Baena-Gonzalez E, Duque P., Plant Cell 28(8), 2016
PMID: 27436712
Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
Day IS, Golovkin M, Palusa SG, Link A, Ali GS, Thomas J, Richardson DN, Reddy AS., Plant J. 71(6), 2012
PMID: 22563826
Long noncoding RNA modulates alternative splicing regulators in Arabidopsis.
Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, Brown JW, Crespi M., Dev. Cell 30(2), 2014
PMID: 25073154
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Koster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res. 40(22), 2012
PMID: 23042250
The spen family protein FPA controls alternative cleavage and polyadenylation of RNA.
Hornyik C, Terzi LC, Simpson GG., Dev. Cell 18(2), 2010
PMID: 20079695
Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation.
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X., Cell Res. 25(7), 2015
PMID: 26099751
The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1.
Dong Z, Han MH, Fedoroff N., Proc. Natl. Acad. Sci. U.S.A. 105(29), 2008
PMID: 18632569
Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis.
Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B., Proc. Natl. Acad. Sci. U.S.A. 109(31), 2012
PMID: 22802657
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Koster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res. 42(15), 2014
PMID: 25104024
MOS11: a new component in the mRNA export pathway.
Germain H, Qu N, Cheng YT, Lee E, Huang Y, Dong OX, Gannon P, Huang S, Ding P, Li Y, Sack F, Zhang Y, Li X., PLoS Genet. 6(12), 2010
PMID: 21203492
Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors.
Kammel C, Thomaier M, Sorensen BB, Schubert T, Langst G, Grasser M, Grasser KD., PLoS ONE 8(3), 2013
PMID: 23555998
UBP1, a novel hnRNP-like protein that functions at multiple steps of higher plant nuclear pre-mRNA maturation.
Lambermon MH, Simpson GG, Wieczorek Kirk DA, Hemmings-Mieszczak M, Klahre U, Filipowicz W., EMBO J. 19(7), 2000
PMID: 10747031
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schuttpelz M, Staiger D., Biochem. Biophys. Res. Commun. 453(1), 2014
PMID: 25251471
Identification of RNA targets for the nuclear multidomain cyclophilin atCyp59 and their effect on PPIase activity.
Bannikova O, Zywicki M, Marquez Y, Skrahina T, Kalyna M, Barta A., Nucleic Acids Res. 41(3), 2012
PMID: 23248006
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol. Biol. Rep. 37(2), 2009
PMID: 19672695
RBP45 and RBP47, two oligouridylate-specific hnRNP-like proteins interacting with poly(A)+ RNA in nuclei of plant cells.
Lorkovic ZJ, Wieczorek Kirk DA, Klahre U, Hemmings-Mieszczak M, Filipowicz W., RNA 6(11), 2000
PMID: 11105760
Global analysis of the RNA–protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus
Gosai, Mol. Cell 57(), 2015
The new (dis)order in RNA regulation.
Jarvelin AI, Noerenberg M, Davis I, Castello A., Cell Commun. Signal 14(), 2016
PMID: 27048167
Genome-wide identification, biochemical characterization, and expression analyses of the YTH domain-containing RNA-binding protein family in Arabidopsis and rice
Li, Plant Mol. Biol. Report. 32(), 2014
N6-methyladenosine-dependent regulation of messenger RNA stability.
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C., Nature 505(7481), 2013
PMID: 24284625
The Arabidopsis epitranscriptome.
Fray RG, Simpson GG., Curr. Opin. Plant Biol. 27(), 2015
PMID: 26048078
Phytochrome controls alternative splicing to mediate light responses in Arabidopsis.
Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T., Proc. Natl. Acad. Sci. U.S.A. 111(52), 2014
PMID: 25512548
CIRCADIAN CLOCK ASSOCIATED1 transcript stability and the entrainment of the circadian clock in Arabidopsis.
Yakir E, Hilman D, Hassidim M, Green RM., Plant Physiol. 145(3), 2007
PMID: 17873091
Phytochrome B integrates light and temperature signals in Arabidopsis.
Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schafer E, Vierstra RD, Casal JJ., Science 354(6314), 2016
PMID: 27789798
Phytochromes function as thermosensors in Arabidopsis.
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schafer E, Jaeger KE, Wigge PA., Science 354(6314), 2016
PMID: 27789797
Thermoplasticity in the plant circadian clock: how plants tell the time-perature.
James AB, Syed NH, Brown JW, Nimmo HG., Plant Signal Behav 7(10), 2012
PMID: 22902701
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana.
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Plant Signal Behav 8(7), 2013
PMID: 23656882
Phytochrome regulates translation of mRNA in the cytosol.
Paik I, Yang S, Choi G., Proc. Natl. Acad. Sci. U.S.A. 109(4), 2012
PMID: 22232680
CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis.
Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C., Proc. Natl. Acad. Sci. U.S.A. 109(47), 2012
PMID: 23132950
EIN2-directed translational regulation of ethylene signaling in Arabidopsis.
Li W, Ma M, Feng Y, Li H, Wang Y, Ma Y, Li M, An F, Guo H., Cell 163(3), 2015
PMID: 26496607
Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2.
Merchante C, Brumos J, Yun J, Hu Q, Spencer KR, Enriquez P, Binder BM, Heber S, Stepanova AN, Alonso JM., Cell 163(3), 2015
PMID: 26496608
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J. 55(3), 2008
PMID: 18410480
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Lohr B, Streitner C, Steffen A, Lange T, Staiger D., Mol. Biol. Rep. 41(1), 2013
PMID: 24281950
Dynamic nucleocytoplasmic shuttling of an Arabidopsis SR splicing factor: role of the RNA-binding domains.
Rausin G, Tillemans V, Stankovic N, Hanikenne M, Motte P., Plant Physiol. 153(1), 2010
PMID: 20237019
Identification of RNA-binding Proteins in Macrophages by Interactome Capture.
Liepelt A, Naarmann-de Vries IS, Simons N, Eichelbaum K, Fohr S, Archer SK, Castello A, Usadel B, Krijgsveld J, Preiss T, Marx G, Hentze MW, Ostareck DH, Ostareck-Lederer A., Mol. Cell Proteomics 15(8), 2016
PMID: 27281784
Serial interactome capture of the human cell nucleus.
Conrad T, Albrecht AS, de Melo Costa VR, Sauer S, Meierhofer D, Orom UA., Nat Commun 7(), 2016
PMID: 27040163
Isolation of proteins comprising native gene-specific messenger ribonucleoprotein particles using paramagnetic beads
Honys, Plant Sci. 161(), 2001
Comprehensive Identification of RNA-Binding Domains in Human Cells.
Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW., Mol. Cell 63(4), 2016
PMID: 27453046
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading.
Missra A, Ernest B, Lohoff T, Jia Q, Satterlee J, Ke K, von Arnim AG., Plant Cell 27(9), 2015
PMID: 26392078
Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana.
Narsai R, Howell KA, Millar AH, O'Toole N, Small I, Whelan J., Plant Cell 19(11), 2007
PMID: 18024567
Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation.
Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, Milos PM, Barton GJ, Simpson GG., Nat. Struct. Mol. Biol. 19(8), 2012
PMID: 22820990
The RNA-binding protein repertoire of embryonic stem cells.
Kwon SC, Yi H, Eichelbaum K, Fohr S, Fischer B, You KT, Castello A, Krijgsveld J, Hentze MW, Kim VN., Nat. Struct. Mol. Biol. 20(9), 2013
PMID: 23912277
Global analysis of yeast mRNPs.
Mitchell SF, Jain S, She M, Parker R., Nat. Struct. Mol. Biol. 20(1), 2012
PMID: 23222640

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28412036
PubMed | Europe PMC

Suchen in

Google Scholar