Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models

ter Horst H, Hartung M, Cimiano P (2017)
In: Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference). Gracia J, Bond F, McCrae JP, Buitelaar P, Chiarcos C, Hellmann S (Eds); Lecture Notes in Artificial Intelligence, 10318. Springer: 166-180.

Download
OA 579.63 KB
Sammelwerksbeitrag | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Herausgeber
; ; ; ; ;
Abstract / Bemerkung
The problems of recognizing mentions of entities in texts and linking them to unique knowledge base identifiers have received considerable attention in recent years. In this paper we present a probabilistic system based on undirected graphical models that jointly addresses both the entity recognition and the linking task. Our framework considers the span of mentions of entities as well as the corresponding knowledge base identifier as random variables and models the joint assignment using a factorized distribution. We show that our approach can be easily applied to different technical domains by merely exchanging the underlying ontology. On the task of recognizing and linking disease names, we show that our approach outperforms the state-of-the-art systems DNorm and TaggerOne, as well as two strong lexicon-based baselines. On the task of recognizing and linking chemical names, our system achieves comparable performance to the state-of-the-art.
Erscheinungsjahr
Buchtitel
Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference)
Band
10318
Seite
166-180
Konferenz
1st International Conference on Language, Data, and Knowledge (LDK)
Konferenzort
Galway, Ireland
Konferenzdatum
2017-06-19 – 2017-06-20
PUB-ID

Zitieren

ter Horst H, Hartung M, Cimiano P. Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models. In: Gracia J, Bond F, McCrae JP, Buitelaar P, Chiarcos C, Hellmann S, eds. Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference). Lecture Notes in Artificial Intelligence. Vol 10318. Springer; 2017: 166-180.
ter Horst, H., Hartung, M., & Cimiano, P. (2017). Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models. In J. Gracia, F. Bond, J. P. McCrae, P. Buitelaar, C. Chiarcos, & S. Hellmann (Eds.), Lecture Notes in Artificial Intelligence: Vol. 10318. Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference) (pp. 166-180). Springer.
ter Horst, H., Hartung, M., and Cimiano, P. (2017). “Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models” in Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference), Gracia, J., Bond, F., McCrae, J. P., Buitelaar, P., Chiarcos, C., and Hellmann, S. eds. Lecture Notes in Artificial Intelligence, vol. 10318, (Springer), 166-180.
ter Horst, H., Hartung, M., & Cimiano, P., 2017. Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models. In J. Gracia, et al., eds. Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference). Lecture Notes in Artificial Intelligence. no.10318 Springer, pp. 166-180.
H. ter Horst, M. Hartung, and P. Cimiano, “Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models”, Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference), J. Gracia, et al., eds., Lecture Notes in Artificial Intelligence, vol. 10318, Springer, 2017, pp.166-180.
ter Horst, H., Hartung, M., Cimiano, P.: Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models. In: Gracia, J., Bond, F., McCrae, J.P., Buitelaar, P., Chiarcos, C., and Hellmann, S. (eds.) Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference). Lecture Notes in Artificial Intelligence. 10318, p. 166-180. Springer (2017).
ter Horst, Hendrik, Hartung, Matthias, and Cimiano, Philipp. “Joint Entity Recognition and Linking in Technical Domains Using Undirected Probabilistic Graphical Models”. Language, Data, and Knowledge (Proceedings of the 1st International LDK Conference). Ed. Jorge Gracia, Francis Bond, John P. McCrae, Paul Buitelaar, Christian Chiarcos, and Sebastian Hellmann. Springer, 2017.Vol. 10318. Lecture Notes in Artificial Intelligence. 166-180.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Name
579.63 KB
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-06-14T08:21:22Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar