Gaussian Mixture Model for 3-DoF orientations

Kim S, Haschke R, Ritter H (2017)
ROBOTICS AND AUTONOMOUS SYSTEMS 87: 28-37.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
This paper presents learning and generalization algorithms for Gaussian Mixture Model (GMM) in order to accurately encode 3-DoF orientations and Euclidean variables in a common model. We employ correct displacement, integration and weighted averaging arithmetics for unit quaternions to adapt the learning and generalization methods of standard GMMs. We validate the proposed method in three different applications, learning a 3-dimensional rotation matrix, learning reachable space of a robot, and learning the motion model from demonstrations. We show good experimental results compared to the state-of-the-art method. (C) 2016 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
ROBOTICS AND AUTONOMOUS SYSTEMS
Band
87
Seite
28-37
ISSN
eISSN
PUB-ID

Zitieren

Kim S, Haschke R, Ritter H. Gaussian Mixture Model for 3-DoF orientations. ROBOTICS AND AUTONOMOUS SYSTEMS. 2017;87:28-37.
Kim, S., Haschke, R., & Ritter, H. (2017). Gaussian Mixture Model for 3-DoF orientations. ROBOTICS AND AUTONOMOUS SYSTEMS, 87, 28-37. doi:10.1016/j.robot.2016.10.002
Kim, S., Haschke, R., and Ritter, H. (2017). Gaussian Mixture Model for 3-DoF orientations. ROBOTICS AND AUTONOMOUS SYSTEMS 87, 28-37.
Kim, S., Haschke, R., & Ritter, H., 2017. Gaussian Mixture Model for 3-DoF orientations. ROBOTICS AND AUTONOMOUS SYSTEMS, 87, p 28-37.
S. Kim, R. Haschke, and H. Ritter, “Gaussian Mixture Model for 3-DoF orientations”, ROBOTICS AND AUTONOMOUS SYSTEMS, vol. 87, 2017, pp. 28-37.
Kim, S., Haschke, R., Ritter, H.: Gaussian Mixture Model for 3-DoF orientations. ROBOTICS AND AUTONOMOUS SYSTEMS. 87, 28-37 (2017).
Kim, Seungsu, Haschke, Robert, and Ritter, Helge. “Gaussian Mixture Model for 3-DoF orientations”. ROBOTICS AND AUTONOMOUS SYSTEMS 87 (2017): 28-37.