Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

Tavassolizadeh A, Rott K, Meier T, Quandt E, Hoelscher H, Reiss G, Meyners D (2016)
SENSORS 16(11): 1902.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro-and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 x 10(-3) strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 +/- 0.2 mu m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 +/- 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.
Publishing Year
ISSN
PUB-ID

Cite this

Tavassolizadeh A, Rott K, Meier T, et al. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS. 2016;16(11): 1902.
Tavassolizadeh, A., Rott, K., Meier, T., Quandt, E., Hoelscher, H., Reiss, G., & Meyners, D. (2016). Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS, 16(11), 1902. doi:10.3390/s16111902
Tavassolizadeh, A., Rott, K., Meier, T., Quandt, E., Hoelscher, H., Reiss, G., and Meyners, D. (2016). Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS 16:1902.
Tavassolizadeh, A., et al., 2016. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS, 16(11): 1902.
A. Tavassolizadeh, et al., “Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors”, SENSORS, vol. 16, 2016, : 1902.
Tavassolizadeh, A., Rott, K., Meier, T., Quandt, E., Hoelscher, H., Reiss, G., Meyners, D.: Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors. SENSORS. 16, : 1902 (2016).
Tavassolizadeh, Ali, Rott, Karsten, Meier, Tobias, Quandt, Eckhard, Hoelscher, Hendrik, Reiss, Günter, and Meyners, Dirk. “Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors”. SENSORS 16.11 (2016): 1902.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar