Thermophilic archaea activate butane via alkyl-coenzyme M formation

Laso-Perez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer H, Riedel D, Richnow H-H, et al. (2016)
NATURE 539(7629): 396-401.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
The anaerobic formation and oxidation of methane involve unique enzymatic mechanisms and cofactors, all of which are believed to be specific for C-1-compounds. Here we show that an anaerobic thermophilic enrichment culture composed of dense consortia of archaea and bacteria apparently uses partly similar pathways to oxidize the C-4 hydrocarbon butane. The archaea, proposed genus Candidatus Syntrophoarchaeum', show the characteristic autofluorescence of methanogens, and contain highly expressed genes encoding enzymes similar to methyl-coenzyme M reductase. We detect butyl-coenzyme M, indicating archaeal butane activation analogous to the first step in anaerobic methane oxidation. In addition, Ca. Syntrophoarchaeum expresses the genes encoding beta-oxidation enzymes, carbon monoxide dehydrogenase and reversible C-1 methanogenesis enzymes. This allows for the complete oxidation of butane. Reducing equivalents are seemingly channelled to HotSeep-1, a thermophilic sulfate-reducing partner bacterium known from the anaerobic oxidation of methane. Genes encoding 16S rRNA and methyl-coenzyme M reductase similar to those identifying Ca. Syntrophoarchaeum were repeatedly retrieved from marine subsurface sediments, suggesting that the presented activation mechanism is naturally widespread in the anaerobic oxidation of short-chain hydrocarbons.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Laso-Perez R, Wegener G, Knittel K, et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. NATURE. 2016;539(7629):396-401.
Laso-Perez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K. J., Krukenberg, V., Meier, D. V., et al. (2016). Thermophilic archaea activate butane via alkyl-coenzyme M formation. NATURE, 539(7629), 396-401. doi:10.1038/nature20152
Laso-Perez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K. J., Krukenberg, V., Meier, D. V., Richter, M., Tegetmeyer, H., Riedel, D., et al. (2016). Thermophilic archaea activate butane via alkyl-coenzyme M formation. NATURE 539, 396-401.
Laso-Perez, R., et al., 2016. Thermophilic archaea activate butane via alkyl-coenzyme M formation. NATURE, 539(7629), p 396-401.
R. Laso-Perez, et al., “Thermophilic archaea activate butane via alkyl-coenzyme M formation”, NATURE, vol. 539, 2016, pp. 396-401.
Laso-Perez, R., Wegener, G., Knittel, K., Widdel, F., Harding, K.J., Krukenberg, V., Meier, D.V., Richter, M., Tegetmeyer, H., Riedel, D., Richnow, H.-H., Adrian, L., Reemtsma, T., Lechtenfeld, O.J., Musat, F.: Thermophilic archaea activate butane via alkyl-coenzyme M formation. NATURE. 539, 396-401 (2016).
Laso-Perez, Rafael, Wegener, Gunter, Knittel, Katrin, Widdel, Friedrich, Harding, Katie J., Krukenberg, Viola, Meier, Dimitri V., Richter, Michael, Tegetmeyer, Halina, Riedel, Dietmar, Richnow, Hans-Hermann, Adrian, Lorenz, Reemtsma, Thorsten, Lechtenfeld, Oliver J., and Musat, Florin. “Thermophilic archaea activate butane via alkyl-coenzyme M formation”. NATURE 539.7629 (2016): 396-401.
This data publication is cited in the following publications:
This publication cites the following data publications:

14 Citations in Europe PMC

Data provided by Europe PubMed Central.

Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota.
Liu Y, Zhou Z, Pan J, Baker BJ, Gu JD, Li M., ISME J 12(4), 2018
PMID: 29445130
Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.
Marlow JJ, Kumar A, Enalls BC, Reynard LM, Tuross N, Stephanopoulos G, Girguis P., Biotechnol Bioeng (), 2018
PMID: 29460958
Symbiosis in the microbial world: from ecology to genome evolution.
Raina JB, Eme L, Pollock FJ, Spang A, Archibald JM, Williams TA., Biol Open 7(2), 2018
PMID: 29472284
The life sulfuric: microbial ecology of sulfur cycling in marine sediments.
Wasmund K, Mußmann M, Loy A., Environ Microbiol Rep 9(4), 2017
PMID: 28419734
The deep, hot biosphere: Twenty-five years of retrospection.
Colman DR, Poudel S, Stamps BW, Boyd ES, Spear JR., Proc Natl Acad Sci U S A 114(27), 2017
PMID: 28674200
Syntrophy Goes Electric: Direct Interspecies Electron Transfer.
Lovley DR., Annu Rev Microbiol 71(), 2017
PMID: 28697668
Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life.
Spang A, Caceres EF, Ettema TJG., Science 357(6351), 2017
PMID: 28798101
The growing tree of Archaea: new perspectives on their diversity, evolution and ecology.
Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S., ISME J 11(11), 2017
PMID: 28777382
Anaerobic Oxidation of Ethane, Propane, and Butane by Marine Microbes: A Mini Review.
Singh R, Guzman MS, Bose A., Front Microbiol 8(), 2017
PMID: 29109712
Microbiology: Deep-sea secrets of butane metabolism.
Ragsdale SW., Nature 539(7629), 2016
PMID: 27853208

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 27749816
PubMed | Europe PMC

Search this title in

Google Scholar