Visual target selection and motor planning define attentional enhancement at perceptual processing stages

Collins T, Heed T, Röder B (2010)
Frontiers in Human Neuroscience 4.

Download
OA
Journal Article | Original Article | Published | English
Author
; ;
Publishing Year
ISSN
PUB-ID

Cite this

Collins T, Heed T, Röder B. Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience. 2010;4.
Collins, T., Heed, T., & Röder, B. (2010). Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience, 4. doi:10.3389/neuro.09.014.2010
Collins, T., Heed, T., and Röder, B. (2010). Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience 4.
Collins, T., Heed, T., & Röder, B., 2010. Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience, 4.
T. Collins, T. Heed, and B. Röder, “Visual target selection and motor planning define attentional enhancement at perceptual processing stages”, Frontiers in Human Neuroscience, vol. 4, 2010.
Collins, T., Heed, T., Röder, B.: Visual target selection and motor planning define attentional enhancement at perceptual processing stages. Frontiers in Human Neuroscience. 4, (2010).
Collins, Thérèse, Heed, Tobias, and Röder, Brigitte. “Visual target selection and motor planning define attentional enhancement at perceptual processing stages”. Frontiers in Human Neuroscience 4 (2010).
All files available under the following license(s):
Creative Commons License:
CC-BY
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
Main File(s)
Access Level
OA Open Access
Last Uploaded
2017-08-11T14:05:46Z

This data publication is cited in the following publications:
This publication cites the following data publications:

9 Citations in Europe PMC

Data provided by Europe PubMed Central.

Neural correlates of tactile perception during pre-, peri-, and post-movement.
Juravle G, Heed T, Spence C, Röder B., Exp Brain Res 234(5), 2016
PMID: 26914480
Saccadic adaptation to a systematically varying disturbance.
Cassanello CR, Ohl S, Rolfs M., J Neurophysiol 116(2), 2016
PMID: 27098027
The role of frontal EEG asymmetry in post-traumatic stress disorder.
Meyer T, Smeets T, Giesbrecht T, Quaedflieg CW, Smulders FT, Meijer EH, Merckelbach HL., Biol Psychol 108(), 2015
PMID: 25843917
Deployment of spatial attention without moving the eyes is boosted by oculomotor adaptation.
Habchi O, Rey E, Mathieu R, Urquizar C, Farnè A, Pélisson D., Front Hum Neurosci 9(), 2015
PMID: 26300755
Allocation of attention for dissociated visual and motor goals.
Song JH, Bédard P., Exp Brain Res 226(2), 2013
PMID: 23417647

69 References

Data provided by Europe PubMed Central.

Cerebellar-dependent adaptive control of primate saccadic system.
Optican LM, Robinson DA., J. Neurophysiol. 44(6), 1980
PMID: 7452323
Target selection and saccade generation in monkey superior colliculus.
Port NL, Wurtz RH., Exp Brain Res 192(3), 2009
PMID: 19030853
Orienting of attention.
Posner MI., Q J Exp Psychol 32(1), 1980
PMID: 7367577
Attention: the mechanisms of consciousness.
Posner MI., Proc. Natl. Acad. Sci. U.S.A. 91(16), 1994
PMID: 8052596
Attentional modulation of visual processing.
Reynolds JH, Chelazzi L., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217345
Space and selective attention
Rizzolatti G., Riggio L., Sheliga B.., 1994
Cerebellar influences on saccade plasticity.
Robinson FR, Fuchs AF, Noto CT., Ann. N. Y. Acad. Sci. 956(), 2002
PMID: 11960801
Improved auditory spatial tuning in blind humans.
Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ., Nature 400(6740), 1999
PMID: 10408442
VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition, and space-based motor action
Schneider W.., 1995
Gradients of spatial attention
Shulman G., Sheehy J., Wilson J.., 1986
Exogenous orienting of attention depends upon the ability to execute eye movements.
Smith DT, Rorden C, Jackson SR., Curr. Biol. 14(9), 2004
PMID: 15120071
Intention-related activity in the posterior parietal cortex: a review.
Snyder LH, Batista AP, Andersen RA., Vision Res. 40(10-12), 2000
PMID: 10788650
Saccade-related activity in the parietal reach region.
Snyder LH, Batista AP, Andersen RA., J. Neurophysiol. 83(2), 2000
PMID: 10669521
Brain circuits for the internal monitoring of movements.
Sommer MA, Wurtz RH., Annu. Rev. Neurosci. 31(), 2008
PMID: 18558858
Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation.
Takeichi N, Kaneko CR, Fuchs AF., J. Neurophysiol. 94(3), 2005
PMID: 15917328
Activity changes in monkey superior colliculus during saccade adaptation.
Takeichi N, Kaneko CR, Fuchs AF., J. Neurophysiol. 97(6), 2007
PMID: 17442764
The blinking spotlight of attention.
VanRullen R, Carlson T, Cavanagh P., Proc. Natl. Acad. Sci. U.S.A. 104(49), 2007
PMID: 18042716

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 20224662
PubMed | Europe PMC

Search this title in

Google Scholar