Polyp activity estimation and monitoring for cold water corals with a deep learning approach

Osterloff J, Nilssen I, Järnegren J, Buhl-Mortensen P, Nattkemper TW (2016)
In: Proceedigs of CVAUI 2016 (ICPR Workshop).

Download
No fulltext has been uploaded. References only!
Conference Paper | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Fixed underwater observatories (FUOs) equipped with a variety of sensors including cameras, allow long-term monitoring with a high temporal resolution of a limited area of interest. FUOs equipped with HD cameras enable in situ monitoring of biological activity, such as live cold-water corals on a level of detail down to individual polyps. We present a workflow which allows monitoring the activity of cold water coral polyps automatically from photos recorded at the FUO LoVe (Lofoten - Vesterålen). The workflow consists of three steps: First the manual polyp activity-level identification, carried out by three observers on a region of interest in 13 images to generate a gold standard. Second, the training of a convolutional neural network (CNN) on the gold standard to automate the polyp activity classification. Third, the computational activity classification is integrated into an algorithmic estimation of polyp activity in a region of interest. We present results obtained for an image series from April to November 2015 that shows interesting temporal behavior patterns correlating with other posterior measurements.
Publishing Year
Conference
2nd Workshop on Computer Vision for Analysis of Underwater Imagery (CVAUI), ICPR Workshop
Location
Cancun, Mexico
Conference Date
2016-12-08 – 2016-12-12
PUB-ID

Cite this

Osterloff J, Nilssen I, Järnegren J, Buhl-Mortensen P, Nattkemper TW. Polyp activity estimation and monitoring for cold water corals with a deep learning approach. In: Proceedigs of CVAUI 2016 (ICPR Workshop). 2016.
Osterloff, J., Nilssen, I., Järnegren, J., Buhl-Mortensen, P., & Nattkemper, T. W. (2016). Polyp activity estimation and monitoring for cold water corals with a deep learning approach. Proceedigs of CVAUI 2016 (ICPR Workshop). doi:10.1109/CVAUI.2016.013
Osterloff, J., Nilssen, I., Järnegren, J., Buhl-Mortensen, P., and Nattkemper, T. W. (2016). “Polyp activity estimation and monitoring for cold water corals with a deep learning approach” in Proceedigs of CVAUI 2016 (ICPR Workshop).
Osterloff, J., et al., 2016. Polyp activity estimation and monitoring for cold water corals with a deep learning approach. In Proceedigs of CVAUI 2016 (ICPR Workshop).
J. Osterloff, et al., “Polyp activity estimation and monitoring for cold water corals with a deep learning approach”, Proceedigs of CVAUI 2016 (ICPR Workshop), 2016.
Osterloff, J., Nilssen, I., Järnegren, J., Buhl-Mortensen, P., Nattkemper, T.W.: Polyp activity estimation and monitoring for cold water corals with a deep learning approach. Proceedigs of CVAUI 2016 (ICPR Workshop). (2016).
Osterloff, Jonas, Nilssen, Ingunn, Järnegren, Johanna, Buhl-Mortensen, Pål, and Nattkemper, Tim Wilhelm. “Polyp activity estimation and monitoring for cold water corals with a deep learning approach”. Proceedigs of CVAUI 2016 (ICPR Workshop). 2016.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar