Carbon Nanomembranes

Turchanin A, Gölzhäuser A (2016)
ADVANCED MATERIALS 28(29): 6075-6103.

Download
No fulltext has been uploaded. References only!
Journal Article | Review | Published | English

No fulltext has been uploaded

Abstract
Carbon nanomembranes (CNMs) are synthetic 2D carbon sheets with tailored physical or chemical properties. These depend on the structure, molecular composition, and surroundings on either side. Due to their molecular thickness, they can be regarded as "interfaces without bulk" separating regions of different gaseous, liquid, or solid components and controlling the materials exchange between them. Here, a universal scheme for the fabrication of 1 nm-thick, mechanically stable, functional CNMs is presented. CNMs can be further modified, for example perforated by ion bombardment or chemically functionalized by the binding of other molecules onto the surfaces. The underlying physical and chemical mechanisms are described, and examples are presented for the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes, or polymer brushes. A simple transfer procedure allows CNMs to be placed on various support structures, which makes them available for diverse applications: supports for electron and X-ray microscopy, nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures, functionalization of graphene, novel nanoelectronic and nanomechanical devices. To close, the potential of CNMs in filtration and sensorics is discussed. Based on tests for the separation of gas molecules, it is argued that ballistic membranes may play a prominent role in future efforts of materials separation.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Turchanin A, Gölzhäuser A. Carbon Nanomembranes. ADVANCED MATERIALS. 2016;28(29):6075-6103.
Turchanin, A., & Gölzhäuser, A. (2016). Carbon Nanomembranes. ADVANCED MATERIALS, 28(29), 6075-6103. doi:10.1002/adma.201506058
Turchanin, A., and Gölzhäuser, A. (2016). Carbon Nanomembranes. ADVANCED MATERIALS 28, 6075-6103.
Turchanin, A., & Gölzhäuser, A., 2016. Carbon Nanomembranes. ADVANCED MATERIALS, 28(29), p 6075-6103.
A. Turchanin and A. Gölzhäuser, “Carbon Nanomembranes”, ADVANCED MATERIALS, vol. 28, 2016, pp. 6075-6103.
Turchanin, A., Gölzhäuser, A.: Carbon Nanomembranes. ADVANCED MATERIALS. 28, 6075-6103 (2016).
Turchanin, Andrey, and Gölzhäuser, Armin. “Carbon Nanomembranes”. ADVANCED MATERIALS 28.29 (2016): 6075-6103.
This data publication is cited in the following publications:
This publication cites the following data publications:

7 Citations in Europe PMC

Data provided by Europe PubMed Central.

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes.
Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingolfsson O, Golzhauser A., Beilstein J Nanotechnol 8(), 2017
PMID: 29259871
Synthesis, structure and applications of graphene-based 2D heterostructures.
Solis-Fernandez P, Bissett M, Ago H., Chem Soc Rev 46(15), 2017
PMID: 28691726
Transferable Organic Semiconductor Nanosheets for Application in Electronic Devices.
Noever SJ, Eder M, Del Giudice F, Martin J, Werkmeister FX, Hallwig S, Fischer S, Seeck O, Weber NE, Liewald C, Keilmann F, Turchanin A, Nickel B., Adv. Mater. Weinheim 29(26), 2017
PMID: 28480616
Photofunctionality in Porphyrin-Hybridized Bis(dipyrrinato)zinc(II) Complex Micro- and Nanosheets.
Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H., Angew. Chem. Int. Ed. Engl. 56(13), 2017
PMID: 28240405
Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Mullen K, Turchanin A, Lebedeva MA, Majouga AG, Nenajdenko VG, Kaiser U, Besley E, Khlobystov AN., ACS Nano 11(3), 2017
PMID: 28191929

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 27281234
PubMed | Europe PMC

Search this title in

Google Scholar