On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version)

Aquilino C (2016)
Bielefeld: Universität Bielefeld.

Download
OA
Bielefelder E-Dissertation | Englisch
Abstract / Bemerkung
The category of strict polynomial functors inherits an internal tensor product from the category of divided powers. In the first part of this thesis we investigate this monoidal structure by considering the category of representations of the symmetric group which admits a tensor product coming from its Hopf algebra structure. It is known that there exists a functor *F* from the category of strict polynomial functors to the category of representations of the symmetric group. We show that *F* is monoidal. In the second part we explain the Cauchy filtration in the framework of strict polynomial functors. This filtration can be seen as the categorification of the Cauchy Formula for symmetric functions and is an important ingredient of the highest weight structure of the category of strict polynomial functors.
Jahr
Seite
75
PUB-ID

Zitieren

Aquilino C. On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version). Bielefeld: Universität Bielefeld; 2016.
Aquilino, C. (2016). On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version). Bielefeld: Universität Bielefeld.
Aquilino, C. (2016). On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version). Bielefeld: Universität Bielefeld.
Aquilino, C., 2016. On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version), Bielefeld: Universität Bielefeld.
C. Aquilino, On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version), Bielefeld: Universität Bielefeld, 2016.
Aquilino, C.: On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version). Universität Bielefeld, Bielefeld (2016).
Aquilino, Cosima. On strict polynomial functors: monoidal structure and Cauchy filtration. (Ergänzte Version). Bielefeld: Universität Bielefeld, 2016.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-09-01T11:48:53Z
MD5 Prüfsumme
9a9eadb8b7934a62f9baa216396f4f12

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar