Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone

Bulut D, Duangdee N, Gröger H, Berkessel A, Hummel W (2016)
Chembiochem 17(14): 1349-1358.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ;
Abstract / Bemerkung
The stereoselective synthesis of chiral 1,3-diols with the aid of biocatalysts is an attractive tool in organic chemistry. Besides the reduction of diketones, an alternative approach consists of the stereoselective reduction of beta-hydroxy ketones (aldols). Thus, we screened for an alcohol dehydrogenase (ADH) that would selectively reduce a beta-hydroxy-beta-trifluoromethyl ketone. One potential starting material for this process is readily available by aldol addition of acetone to 2,2,2-trifluoroacetophenone. Over 200 strains were screened, and only a few yeast strains showed stereoselective reduction activities. The enzyme responsible for the reduction of the beta-hydroxy-beta-trifluoromethyl ketone was identified after purification and subsequent MALDI-TOF mass spectrometric analysis. As a result, a new NADP(+) -dependent ADH from Pichia pastoris (PPADH) was identified and confirmed to be capable of stereospecific and diastereoselective reduction of the beta-hydroxy-beta-trifluoromethyl ketone to its corresponding 1,3-diol. The gene encoding PPADH was cloned and heterologously expressed in Escherichia coli BL21(DE3). To determine the influence of an N- or C-terminal His-tag fusion, three different recombinant plasmids were constructed. Interestingly, the variant with the N-terminal His-tag showed the highest activity; consequently, this variant was purified and characterized. Kinetic parameters and the dependency of activity on pH and temperature were determined. PPADH shows a substrate preference for the reduction of linear and branched aliphatic aldehydes. Surprisingly, the enzyme shows no comparable activity towards ketones other than the beta-hydroxy-beta-trifluoromethyl ketone. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Erscheinungsjahr
Zeitschriftentitel
Chembiochem
Band
17
Zeitschriftennummer
14
Seite
1349-1358
ISSN
PUB-ID

Zitieren

Bulut D, Duangdee N, Gröger H, Berkessel A, Hummel W. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem. 2016;17(14):1349-1358.
Bulut, D., Duangdee, N., Gröger, H., Berkessel, A., & Hummel, W. (2016). Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem, 17(14), 1349-1358. doi:10.1002/cbic.201600101
Bulut, D., Duangdee, N., Gröger, H., Berkessel, A., and Hummel, W. (2016). Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem 17, 1349-1358.
Bulut, D., et al., 2016. Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem, 17(14), p 1349-1358.
D. Bulut, et al., “Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone”, Chembiochem, vol. 17, 2016, pp. 1349-1358.
Bulut, D., Duangdee, N., Gröger, H., Berkessel, A., Hummel, W.: Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone. Chembiochem. 17, 1349-1358 (2016).
Bulut, Dalia, Duangdee, Nongnaphat, Gröger, Harald, Berkessel, Albrecht, and Hummel, Werner. “Screening, Molecular Cloning, and Biochemical Characterization of an Alcohol Dehydrogenase from Pichia pastoris Useful for the Kinetic Resolution of a Racemic β-Hydroxy-β-trifluoromethyl Ketone”. Chembiochem 17.14 (2016): 1349-1358.

34 References

Daten bereitgestellt von Europe PubMed Central.

Biocatalytic reductions: from lab curiosity to "first choice".
De Wildeman SM, Sonke T, Schoemaker HE, May O., Acc. Chem. Res. 40(12), 2007
PMID: 17941701
Practical chiral alcohol manufacture using ketoreductases.
Huisman GW, Liang J, Krebber A., Curr Opin Chem Biol 14(2), 2010
PMID: 20071211

Patel, Coord. Chem. Rev. 252(), 2008

Gupta, Catal. Sci. Technol. 3(), 2013
Sequential and modular synthesis of chiral 1,3-diols with two stereogenic centers: access to all four stereoisomers by combination of organo- and biocatalysis.
Baer K, Krausser M, Burda E, Hummel W, Berkessel A, Groger H., Angew. Chem. Int. Ed. Engl. 48(49), 2009
PMID: 19902444

AUTHOR UNKNOWN, Angew. Chem. 113(), 2009
Highly enantioselective organocatalytic trifluoromethyl carbinol synthesis--a caveat on reaction times and product isolation.
Duangdee N, Harnying W, Rulli G, Neudorfl JM, Groger H, Berkessel A., J. Am. Chem. Soc. 134(27), 2012
PMID: 22631871
Genome sequence of the recombinant protein production host Pichia pastoris.
De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van de Peer Y, Callewaert N., Nat. Biotechnol. 27(6), 2009
PMID: 19465926
High-quality genome sequence of Pichia pastoris CBS7435.
Kuberl A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H., J. Biotechnol. 154(4), 2011
PMID: 21575661
Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis.
Sabaty M, Grosse S, Adryanczyk G, Boiry S, Biaso F, Arnoux P, Pignol D., BMC Biochem. 14(), 2013
PMID: 24180491
Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis.
Panek A, Pietrow O, Filipkowski P, Synowiecki J., Acta Biochim. Pol. 60(2), 2013
PMID: 23745178
Double trouble-Buffer selection and His-tag presence may be responsible for nonreproducibility of biomedical experiments.
Majorek KA, Kuhn ML, Chruszcz M, Anderson WF, Minor W., Protein Sci. 23(10), 2014
PMID: 25044180

Song, J. Pharm. Invest. 42(), 2012
One-pot synthesis of enantiopure 3,4-dihydroisocoumarins through dynamic reductive kinetic resolution processes.
Mangas-Sanchez J, Busto E, Gotor V, Gotor-Fernandez V., Org. Lett. 15(15), 2013
PMID: 23848587

Carlquist, Tetrahedron: Asymmetry 19(), 2008

Dai-Huan, J. Pure Appl. Microbiol. 8(), 2014

Silva, J. Mol. Catal. B 83(), 2012

Matsumoto, Lett. Org. Chem. 8(), 2011

Sanfilippo, J. Mol. Catal. B 104(), 2014

Zhang, Tetrahedron 70(), 2014

Vlasyuk, Russ. Chem. Bull. 62(), 2014
Engineering the third wave of biocatalysis.
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K., Nature 485(7397), 2012
PMID: 22575958

Yousefi, J. Mol. Catal. B 104(), 2014

Müller, ChemBioEng Rev. 1(), 2014

Riebel, Adv. Synth. Catal. Adv. Synth. Catal 344(), 2002

Riebel, Adv. Synth. Catal. 345(), 2003

AUTHOR UNKNOWN, 0

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27123855
PubMed | Europe PMC

Suchen in

Google Scholar