Evidence of positive selection associated with placental loss in tiger sharks

Swift DG, Dunning LT, Igea J, Brooks EJ, Jones CS, Noble LR, Ciezarek A, Humble E, Savolainen V (2016)
BMC EVOLUTIONARY BIOLOGY 16: 126.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Background: All vertebrates initially feed their offspring using yolk reserves. In some live-bearing species these yolk reserves may be supplemented with extra nutrition via a placenta. Sharks belonging to the Carcharhinidae family are all live-bearing, and with the exception of the tiger shark (Galeocerdo cuvier), develop placental connections after exhausting yolk reserves. Phylogenetic relationships suggest the lack of placenta in tiger sharks is due to secondary loss. This represents a dramatic shift in reproductive strategy, and is likely to have left a molecular footprint of positive selection within the genome. Results: We sequenced the transcriptome of the tiger shark and eight other live-bearing shark species. From this data we constructed a time-calibrated phylogenetic tree estimating the tiger shark lineage diverged from the placental carcharhinids approximately 94 million years ago. Along the tiger shark lineage, we identified five genes exhibiting a signature of positive selection. Four of these genes have functions likely associated with brain development (YWHAE and ARL6IP5) and sexual reproduction (VAMP4 and TCTEX1D2). Conclusions: Our results indicate the loss of placenta in tiger sharks may be associated with subsequent adaptive changes in brain development and sperm production.
Erscheinungsjahr
Zeitschriftentitel
BMC EVOLUTIONARY BIOLOGY
Band
16
Artikelnummer
126
ISSN
PUB-ID

Zitieren

Swift DG, Dunning LT, Igea J, et al. Evidence of positive selection associated with placental loss in tiger sharks. BMC EVOLUTIONARY BIOLOGY. 2016;16: 126.
Swift, D. G., Dunning, L. T., Igea, J., Brooks, E. J., Jones, C. S., Noble, L. R., Ciezarek, A., et al. (2016). Evidence of positive selection associated with placental loss in tiger sharks. BMC EVOLUTIONARY BIOLOGY, 16, 126. doi:10.1186/s12862-016-0696-y
Swift, D. G., Dunning, L. T., Igea, J., Brooks, E. J., Jones, C. S., Noble, L. R., Ciezarek, A., Humble, E., and Savolainen, V. (2016). Evidence of positive selection associated with placental loss in tiger sharks. BMC EVOLUTIONARY BIOLOGY 16:126.
Swift, D.G., et al., 2016. Evidence of positive selection associated with placental loss in tiger sharks. BMC EVOLUTIONARY BIOLOGY, 16: 126.
D.G. Swift, et al., “Evidence of positive selection associated with placental loss in tiger sharks”, BMC EVOLUTIONARY BIOLOGY, vol. 16, 2016, : 126.
Swift, D.G., Dunning, L.T., Igea, J., Brooks, E.J., Jones, C.S., Noble, L.R., Ciezarek, A., Humble, E., Savolainen, V.: Evidence of positive selection associated with placental loss in tiger sharks. BMC EVOLUTIONARY BIOLOGY. 16, : 126 (2016).
Swift, Dominic G., Dunning, Luke T., Igea, Javier, Brooks, Edward J., Jones, Catherine S., Noble, Leslie R., Ciezarek, Adam, Humble, Emily, and Savolainen, Vincent. “Evidence of positive selection associated with placental loss in tiger sharks”. BMC EVOLUTIONARY BIOLOGY 16 (2016): 126.

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

83 References

Daten bereitgestellt von Europe PubMed Central.

Convergent evolution of viviparity, matrotrophy, and specialisations for fetal nutrition in reptiles and other vertebrates
Blackburn DG., 1992
Reflections on the Evolution of Piscine Viviparity
Wourms JP, Lombardi J., 1992
Superfoetative viviparity in a Carboniferous chondrichthyan and reproduction in early gnathostomes
Grogan ED, Lund R., 2011

AUTHOR UNKNOWN, 0

Mossman HW., 1987
Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females
Velo-Antón G, Santos X, Sanmartín-Villar I, Cordero-Rivera A, Buckley D., 2015
Reproductive Biology of Elasmobranchs
Conrath CL, Musick JA., 2012
Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome.
Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S., PLoS Biol. 5(4), 2007
PMID: 17407382
The complex transcriptional landscape of the anucleate human platelet.
Bray PF, McKenzie SE, Edelstein LC, Nagalla S, Delgrosso K, Ertel A, Kupper J, Jing Y, Londin E, Loher P, Chen HW, Fortina P, Rigoutsos I., BMC Genomics 14(), 2013
PMID: 23323973
Elephant shark genome provides unique insights into gnathostome evolution.
Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC., Nature 505(7482), 2014
PMID: 24402279
Selachian cytogenetics: a review.
Stingo V, Rocco L., Genetica 111(1-3), 2001
PMID: 11841178
The zebrafish reference genome sequence and its relationship to the human genome.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Eliott D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Mortimer B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL., Nature 496(7446), 2013
PMID: 23594743
Uterine specializations in elasmobranchs
Hamlett W, Hysell M., 1998
Does more maternal investment mean a larger brain? Evolutionary relationships between reproductive mode and brain size in chondrichthyans
Mull CG, Yopak KE, Dulvy NK., 2011

Compagno L, Dando M, Fowler S., 2005
A novel mode of embryonic nutrition in the tiger shark, Galeocerdo cuvier
Castro JI, Sato K, Bodine AB., 2016
Full-length transcriptome assembly from RNA-Seq data without a reference genome.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A., Nat. Biotechnol. 29(7), 2011
PMID: 21572440
PAML 4: phylogenetic analysis by maximum likelihood.
Yang Z., Mol. Biol. Evol. 24(8), 2007
PMID: 17483113
Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection
Yang Z, Wong WSW, Nielsen R., 2005
Beiträge zur Kenntniss der fossilen Fische aus der Molasse von Baltringen. Hayfische
Probst J., 1879
Revisione degli “ittiodontoliti pliocenici” della collezione Lawley
Landini W., 1977
Decouverte d’une faune originale d'elasmobranches dans les phosphates du Toarcien Lorrain (couche á Coeloceras crassum)
Delsate D, Lepage J., 1990
Les Orectolobiformes, Carchariniformes, et Myliobatiformes (Elasmobranchii, Neoselachii) des Bassins a phosphate du Maroc (Maastrichtian-Lutétien basal)
Noubhani A, Cappetta H., 1997
Shark and ray teeth from the Hauterivian (Lower Cretaceous) of north-east England
Underwood CJ, Mitchell SF, Veltkamp KJ., 1999
Neoselachian sharks and rays from the British Bathonian (Middle Jurassic)
Underwood CJ, Ward DJ., 2004

AUTHOR UNKNOWN, 0
The effect of habitat on modern shark diversification.
Sorenson L, Santini F, Alfaro ME., J. Evol. Biol. 27(8), 2014
PMID: 24890604

Zangerl R., 1981
The Origin and Relationships of Early Chondricthyans
Grogan ED, Lund R, Greenfest-Allen E., 2012
Prey Capture Behavior and Feeding Mechanics of Elasmobranchs
Motta PJ, Huber DR., 2012
Reproductive biology of the tiger shark (Galeocerdo cuvier) in Hawaii
Whitney NM, Crow GL., 2007
Tctex2-related outer arm dynein light chain is phosphorylated at activation of sperm motility.
Inaba K, Kagami O, Ogawa K., Biochem. Biophys. Res. Commun. 256(1), 1999
PMID: 10066443
LC2, the chlamydomonas homologue of the t complex-encoded protein Tctex2, is essential for outer dynein arm assembly.
Pazour GJ, Koutoulis A, Benashski SE, Dickert BL, Sheng H, Patel-King RS, King SM, Witman GB., Mol. Biol. Cell 10(10), 1999
PMID: 10512883
Subunit composition of the human cytoplasmic dynein-2 complex.
Asante D, Stevenson NL, Stephens DJ., J. Cell. Sci. 127(Pt 21), 2014
PMID: 25205765
Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia.
Rashid S, Grzmil P, Drenckhahn JD, Meinhardt A, Adham I, Engel W, Neesen J., Reproduction 139(1), 2010
PMID: 19778998
Proteomic analysis of proteins involved in spermiogenesis in mouse.
Guo X, Shen J, Xia Z, Zhang R, Zhang P, Zhao C, Xing J, Chen L, Chen W, Lin M, Huo R, Su B, Zhou Z, Sha J., J. Proteome Res. 9(3), 2010
PMID: 20099899
Sperm competition and its evolutionary consequences in the insects
Parker GA., 1970
Comparative morphology of the sperm in chondrichthyan fishes
Tanaka S, Kurokawa H, Hara M., 1995
Sperm viability and sperm competition in insects.
Hunter FM, Birkhead TR., Curr. Biol. 12(2), 2002
PMID: 11818062
Polyandry reduces sperm length variation in social insects.
Fitzpatrick JL, Baer B., Evolution 65(10), 2011
PMID: 21967440
EAAC1 gene deletion increases neuronal death and blood brain barrier disruption after transient cerebral ischemia in female mice.
Choi BY, Kim JH, Kim HJ, Lee BE, Kim IY, Sohn M, Suh SW., Int J Mol Sci 15(11), 2014
PMID: 25350110
The role of glutamate transporters in glutamate homeostasis in the brain.
Takahashi M, Billups B, Rossi D, Sarantis M, Hamann M, Attwell D., J. Exp. Biol. 200(Pt 2), 1997
PMID: 9050249
Scalloped hammerhead shark Sphyrna lewini, utilizes deep-water, hypoxic zone in the Gulf of California.
Jorgensen SJ, Klimley AP, Muhlia-Melo AF., J. Fish Biol. 74(7), 2009
PMID: 20735666
Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: Evidence for resource partitioning and competitive exclusion
Papastamatiou YP, Wetherbee BM, Lowe CG, Crow GL., 2006
Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem
Heithaus MR, Dill LM, Marshall GJ, Buhleier B., 2002
Ecosystem metabolism in a subtropical, seagrass-dominated lagoon
Ziegler S, Benner R., 1998
Placental invasiveness and brain-body allometry in eutherian mammals.
Elliot MG, Crespi BJ., J. Evol. Biol. 21(6), 2008
PMID: 18808441
Implications of hypoxia for the brain size and gill morphometry of mormyrid fishes
Chapman LJ, Hulen KG., 2001
Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid
Chapman LJ, Galis F, Shinn J., 2000
Developmental Plasticity, Genetic Differentiation, and Hypoxia-induced Trade-offs in an African Cichlid Fish
Chapman L, Albert J, Galis F., 2008
14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome.
Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A., Nat. Genet. 34(3), 2003
PMID: 12796778

Reich DE, Goldstein DB., 1999
Ancient and continuing Darwinian selection on insulin-like growth factor II in placental fishes.
O'Neill MJ, Lawton BR, Mateos M, Carone DM, Ferreri GC, Hrbek T, Meredith RW, Reznick DN, O'Neill RJ., Proc. Natl. Acad. Sci. U.S.A. 104(30), 2007
PMID: 17636118
Neutral theory: the null hypothesis of molecular evolution
Duret L., 2008
Patterns of positive selection in six Mammalian genomes.
Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A., PLoS Genet. 4(8), 2008
PMID: 18670650

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Search and clustering orders of magnitude faster than BLAST.
Edgar RC., Bioinformatics 26(19), 2010
PMID: 20709691
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
M-Coffee: combining multiple sequence alignment methods with T-Coffee.
Wallace IM, O'Sullivan O, Higgins DG, Notredame C., Nucleic Acids Res. 34(6), 2006
PMID: 16556910
A new look at the statistical model identification
Akaike H., 1974
jModelTest 2: more models, new heuristics and parallel computing.
Darriba D, Taboada GL, Doallo R, Posada D., Nat. Methods 9(8), 2012
PMID: 22847109
Molecular signatures of natural selection.
Nielsen R., Annu. Rev. Genet. 39(), 2005
PMID: 16285858
Statistical properties of the branch-site test of positive selection.
Yang Z, dos Reis M., Mol. Biol. Evol. 28(3), 2010
PMID: 21087944
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y, Hochberg Y., 1995
Patterns of positive selection in seven ant genomes.
Roux J, Privman E, Moretti S, Daub JT, Robinson-Rechavi M, Keller L., Mol. Biol. Evol. 31(7), 2014
PMID: 24782441
More genes underwent positive selection in chimpanzee evolution than in human evolution.
Bakewell MA, Shi P, Zhang J., Proc. Natl. Acad. Sci. U.S.A. 104(18), 2007
PMID: 17449636

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27296413
PubMed | Europe PMC

Suchen in

Google Scholar