Environmental Breviatea harbour mutualistic Arcobacter epibionts

Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer H, Riedel D, Littmann S, Chen J, Milucka J, Viehweger B, Becker KW, Dong X, et al. (2016)
NATURE 534(7606): 254-258.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi(1,2). This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle(3,4). Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P) H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection(5), but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea(4) reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism(6), as shown here for Arcobacter and Breviatea.
Erscheinungsjahr
Zeitschriftentitel
NATURE
Band
534
Zeitschriftennummer
7606
Seite
254-258
ISSN
eISSN
PUB-ID

Zitieren

Hamann E, Gruber-Vodicka H, Kleiner M, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. NATURE. 2016;534(7606):254-258.
Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H., Riedel, D., Littmann, S., Chen, J., et al. (2016). Environmental Breviatea harbour mutualistic Arcobacter epibionts. NATURE, 534(7606), 254-258. doi:10.1038/nature18297
Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H., Riedel, D., Littmann, S., Chen, J., Milucka, J., Viehweger, B., Becker, K. W., et al. (2016). Environmental Breviatea harbour mutualistic Arcobacter epibionts. NATURE 534, 254-258.
Hamann, E., et al., 2016. Environmental Breviatea harbour mutualistic Arcobacter epibionts. NATURE, 534(7606), p 254-258.
E. Hamann, et al., “Environmental Breviatea harbour mutualistic Arcobacter epibionts”, NATURE, vol. 534, 2016, pp. 254-258.
Hamann, E., Gruber-Vodicka, H., Kleiner, M., Tegetmeyer, H., Riedel, D., Littmann, S., Chen, J., Milucka, J., Viehweger, B., Becker, K.W., Dong, X., Stairs, C.W., Hinrichs, K.-U., Brown, M.W., Roger, A.J., Strous, M.: Environmental Breviatea harbour mutualistic Arcobacter epibionts. NATURE. 534, 254-258 (2016).
Hamann, Emmo, Gruber-Vodicka, Harald, Kleiner, Manuel, Tegetmeyer, Halina, Riedel, Dietmar, Littmann, Sten, Chen, Jianwei, Milucka, Jana, Viehweger, Bernhard, Becker, Kevin W., Dong, Xiaoli, Stairs, Courtney W., Hinrichs, Kai-Uwe, Brown, Matthew W., Roger, Andrew J., and Strous, Marc. “Environmental Breviatea harbour mutualistic Arcobacter epibionts”. NATURE 534.7606 (2016): 254-258.

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments.
Dyksma S, Pjevac P, Ovanesov K, Mussmann M., Environ Microbiol 20(2), 2018
PMID: 28772023
Syntrophic linkage between predatory Carpediemonas and specific prokaryotic populations.
Hamann E, Tegetmeyer HE, Riedel D, Littmann S, Ahmerkamp S, Chen J, Hach PF, Strous M., ISME J 11(5), 2017
PMID: 28211847
Symbiosis in eukaryotic evolution.
López-García P, Eme L, Moreira D., J Theor Biol 434(), 2017
PMID: 28254477
Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.
Rubin-Blum M, Antony CP, Borowski C, Sayavedra L, Pape T, Sahling H, Bohrmann G, Kleiner M, Redmond MC, Valentine DL, Dubilier N., Nat Microbiol 2(), 2017
PMID: 28628098
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis.
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ., PLoS Biol 15(9), 2017
PMID: 28892507
Assessing species biomass contributions in microbial communities via metaproteomics.
Kleiner M, Thorson E, Sharp CE, Dong X, Liu D, Li C, Strous M., Nat Commun 8(1), 2017
PMID: 29146960
Bacterial Succession on Sinking Particles in the Ocean's Interior.
Pelve EA, Fontanez KM, DeLong EF., Front Microbiol 8(), 2017
PMID: 29225592
HydDB: A web tool for hydrogenase classification and analysis.
Søndergaard D, Pedersen CN, Greening C., Sci Rep 6(), 2016
PMID: 27670643

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 27279223
PubMed | Europe PMC

Suchen in

Google Scholar