Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii

Toxopeus J, Jakobs R, Ferguson LV, Gariepy TD, Sinclair BJ (2016)
JOURNAL OF INSECT PHYSIOLOGY 89: 37-51.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ;
Abstract
Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. (C) 2016 Elsevier Ltd. All rights reserved.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Toxopeus J, Jakobs R, Ferguson LV, Gariepy TD, Sinclair BJ. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY. 2016;89:37-51.
Toxopeus, J., Jakobs, R., Ferguson, L. V., Gariepy, T. D., & Sinclair, B. J. (2016). Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY, 89, 37-51. doi:10.1016/j.jinsphys.2016.03.006
Toxopeus, J., Jakobs, R., Ferguson, L. V., Gariepy, T. D., and Sinclair, B. J. (2016). Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY 89, 37-51.
Toxopeus, J., et al., 2016. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY, 89, p 37-51.
J. Toxopeus, et al., “Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii”, JOURNAL OF INSECT PHYSIOLOGY, vol. 89, 2016, pp. 37-51.
Toxopeus, J., Jakobs, R., Ferguson, L.V., Gariepy, T.D., Sinclair, B.J.: Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. JOURNAL OF INSECT PHYSIOLOGY. 89, 37-51 (2016).
Toxopeus, Jantina, Jakobs, Ruth, Ferguson, Laura V., Gariepy, Tara D., and Sinclair, Brent J. “Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii”. JOURNAL OF INSECT PHYSIOLOGY 89 (2016): 37-51.
This data publication is cited in the following publications:
This publication cites the following data publications:

7 Citations in Europe PMC

Data provided by Europe PubMed Central.

Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii.
Terhzaz S, Alford L, Yeoh JG, Marley R, Dornan AJ, Dow JA, Davies SA., Pest Manag Sci 74(4), 2018
PMID: 28714258
Spatial Analysis of Seasonal Dynamics and Overwintering of Drosophila suzukii (Diptera: Drosophilidae) in the Okanagan-Columbia Basin, 2010-2014.
Thistlewood HMA, Gill P, Beers EH, Shearer PW, Walsh DB, Rozema BM, Acheampong S, Castagnoli S, Yee WL, Smytheman P, Whitener AB., Environ Entomol 47(2), 2018
PMID: 29506136
Cold tolerance of third-instar Drosophila suzukii larvae.
Jakobs R, Ahmadi B, Houben S, Gariepy TD, Sinclair BJ., J Insect Physiol 96(), 2017
PMID: 27765625
Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome.
MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJ, Sinclair BJ., Sci Rep 6(), 2016
PMID: 27357258

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 27039032
PubMed | Europe PMC

Search this title in

Google Scholar