Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)

Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehöver P, Weisshaar B, Schmidt T (2016)
BMC Plant Biology 16: 120.

Download
OA 1.66 MB
Journal Article | Original Article | Published | English
Author
; ; ; ; ; ;
Abstract
Background Sugar beet (Beta vulgaris) is an important crop of temperate climate zones, which provides nearly 30 % of the world’s annual sugar needs. From the total genome size of 758 Mb, only 567 Mb were incorporated in the recently published genome sequence, due to the fact that regions with high repetitive DNA contents (e.g. satellite DNAs) are only partially included. Therefore, to fill these gaps and to gain information about the repeat composition of centromeres and heterochromatic regions, we performed chromatin immunoprecipitation followed by sequencing (ChIP-Seq) using antibodies against the centromere-specific histone H3 variant of sugar beet (CenH3) and the heterochromatic mark of dimethylated lysine 9 of histone H3 (H3K9me2). Results ChIP-Seq analysis revealed that active centromeres containing CenH3 consist of the satellite pBV and the Ty3-gypsy retrotransposon Beetle7, while heterochromatin marked by H3K9me2 exhibits heterogeneity in repeat composition. H3K9me2 was mainly associated with the satellite family pEV, the Ty1-copia retrotransposon family Cotzilla and the DNA transposon superfamily of the En/Spm type. In members of the section Beta within the genus Beta, immunostaining using the CenH3 antibody was successful, indicating that orthologous CenH3 proteins are present in closely related species within this section. Conclusions The identification of repetitive genome portions by ChIP-Seq experiments complemented the sugar beet reference sequence by providing insights into the repeat composition of poorly characterized CenH3-chromatin and H3K9me2-heterochromatin. Therefore, our work provides the basis for future research and application concerning the sugar beet centromere and repeat rich heterochromatic regions characterized by the presence of H3K9me2.
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Kowar T, Zakrzewski F, Macas J, et al. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 2016;16: 120.
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., & Schmidt, T. (2016). Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology, 16, 120. doi:10.1186/s12870-016-0805-5
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., and Schmidt, T. (2016). Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology 16:120.
Kowar, T., et al., 2016. Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology, 16: 120.
T. Kowar, et al., “Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)”, BMC Plant Biology, vol. 16, 2016, : 120.
Kowar, T., Zakrzewski, F., Macas, J., Kobližková, A., Viehöver, P., Weisshaar, B., Schmidt, T.: Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris). BMC Plant Biology. 16, : 120 (2016).
Kowar, Teresa, Zakrzewski, Falk, Macas, Jiří, Kobližková, Andrea, Viehöver, Prisca, Weisshaar, Bernd, and Schmidt, Thomas. “Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris)”. BMC Plant Biology 16 (2016): 120.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-06-08T09:32:02Z

This data publication is cited in the following publications:
This publication cites the following data publications:

1 Citation in Europe PMC

Data provided by Europe PubMed Central.

Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum.
Zhang W, Zuo S, Li Z, Meng Z, Han J, Song J, Pan YB, Wang K., Sci Rep 7(), 2017
PMID: 28134354

47 References

Data provided by Europe PubMed Central.

Stretching the rules: monocentric chromosomes with multiple centromere domains.
Neumann P, Navratilova A, Schroeder-Reiter E, Koblizkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J., PLoS Genet. 8(6), 2012
PMID: 22737088
Repeatless and repeat-based centromeres in potato: implications for centromere evolution.
Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, Macas J, Jiang J., Plant Cell 24(9), 2012
PMID: 22968715
Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).
Menzel G, Dechyeva D, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., Ann. Bot. 102(4), 2008
PMID: 18682437
The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.
Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J., Proc. Natl. Acad. Sci. U.S.A. 110(50), 2013
PMID: 24191062
Centromeric retroelements and satellites interact with maize kinetochore protein CENH3.
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK., Plant Cell 14(11), 2002
PMID: 12417704
Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon.
Tek AL, Kashihara K, Murata M, Nagaki K., Chromosome Res. 18(3), 2010
PMID: 20204495
Plant centromeric retrotransposons: a structural and cytogenetic perspective.
Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J., Mob DNA 2(1), 2011
PMID: 21371312
Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species.
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J., Proc. Natl. Acad. Sci. U.S.A. 102(33), 2005
PMID: 16040802
A transcription fork model for Pol IV and Pol V-dependent RNA-directed DNA methylation.
Pikaard CS, Haag JR, Pontes OM, Blevins T, Cocklin R., Cold Spring Harb. Symp. Quant. Biol. 77(), 2012
PMID: 23567894
Epigenetic regulation of heterochromatic DNA stability.
Peng JC, Karpen GH., Curr. Opin. Genet. Dev. 18(2), 2008
PMID: 18372168
A PCR-based assay to detect En/Spm-like transposon sequences in plants.
Staginnus C, Huettel B, Desel C, Schmidt T, Kahl G., Chromosome Res. 9(7), 2001
PMID: 11721956
High-frequency gene transfer from the chloroplast genome to the nucleus.
Stegemann S, Hartmann S, Ruf S, Bock R., Proc. Natl. Acad. Sci. U.S.A. 100(15), 2003
PMID: 12817081
Cytoplasmic organelle DNA preferentially inserts into open chromatin.
Wang D, Timmis JN., Genome Biol Evol 5(6), 2013
PMID: 23661564
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Diversification, evolution and methylation of short interspersed nuclear element families in sugar beet and related Amaranthaceae species.
Schwichtenberg K, Wenke T, Zakrzewski F, Seibt KM, Minoche A, Dohm JC, Weisshaar B, Himmelbauer H, Schmidt T., Plant J. 85(2), 2016
PMID: 26676716

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 27230558
PubMed | Europe PMC

Search this title in

Google Scholar