Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles

Nottbohm CT, Beyer A, Sologubenko AS, Ennen I, Hütten A, Rösner H, Eck W, Mayer J, Gölzhäuser A (2008)
Ultramicroscopy 108(9): 885-892.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Ultramicroscopy
Band
108
Zeitschriftennummer
9
Seite
885-892
ISSN
PUB-ID

Zitieren

Nottbohm CT, Beyer A, Sologubenko AS, et al. Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles. Ultramicroscopy. 2008;108(9):885-892.
Nottbohm, C. T., Beyer, A., Sologubenko, A. S., Ennen, I., Hütten, A., Rösner, H., Eck, W., et al. (2008). Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles. Ultramicroscopy, 108(9), 885-892. doi:10.1016/j.ultramic.2008.02.008
Nottbohm, C. T., Beyer, A., Sologubenko, A. S., Ennen, I., Hütten, A., Rösner, H., Eck, W., Mayer, J., and Gölzhäuser, A. (2008). Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles. Ultramicroscopy 108, 885-892.
Nottbohm, C.T., et al., 2008. Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles. Ultramicroscopy, 108(9), p 885-892.
C.T. Nottbohm, et al., “Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles”, Ultramicroscopy, vol. 108, 2008, pp. 885-892.
Nottbohm, C.T., Beyer, A., Sologubenko, A.S., Ennen, I., Hütten, A., Rösner, H., Eck, W., Mayer, J., Gölzhäuser, A.: Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles. Ultramicroscopy. 108, 885-892 (2008).
Nottbohm, Christoph T., Beyer, André, Sologubenko, Alla S., Ennen, Inga, Hütten, Andreas, Rösner, Harald, Eck, Wolfgang, Mayer, Joachim, and Gölzhäuser, Armin. “Novel carbon nanosheets as support for ultrahigh-resolution structural analysis of nanoparticles”. Ultramicroscopy 108.9 (2008): 885-892.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Amino-terminated biphenylthiol self-assembled monolayers as highly reactive molecular templates.
Meyerbroeker N, Waske P, Zharnikov M., J Chem Phys 142(10), 2015
PMID: 25770508
Imaging of carbon nanomembranes with helium ion microscopy.
Beyer A, Vieker H, Klett R, Meyer Zu Theenhausen H, Angelova P, Gölzhäuser A., Beilstein J Nanotechnol 6(), 2015
PMID: 26425423
Carbon nanomembranes (CNMs) supported by polymer: mechanics and gas permeation.
Ai M, Shishatskiy S, Wind J, Zhang X, Nottbohm CT, Mellech N, Winter A, Vieker H, Qiu J, Dietz KJ, Gölzhäuser A, Beyer A., Adv Mater 26(21), 2014
PMID: 24535992
Ultraflexible, freestanding nanomembranes based on poly(ethylene glycol).
Meyerbröker N, Zharnikov M., Adv Mater 26(20), 2014
PMID: 24677589
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Gölzhäuser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285
Imaging nanocarbon materials: soot particles in flames are not structurally homogeneous.
Schenk M, Lieb S, Vieker H, Beyer A, Gölzhäuser A, Wang H, Kohse-Höinghaus K., Chemphyschem 14(14), 2013
PMID: 23946250
Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.
Wu W, Yu Q, Peng P, Liu Z, Bao J, Pei SS., Nanotechnology 23(3), 2012
PMID: 22173552
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes.
Rhinow D, Büenfeld M, Weber NE, Beyer A, Gölzhäuser A, Kühlbrandt W, Hampp N, Turchanin A., Ultramicroscopy 111(5), 2011
PMID: 21329648
Ultrahigh resolution focused electron beam induced processing: the effect of substrate thickness.
van Dorp WF, Lazić I, Beyer A, Gölzhäuser A, Wagner JB, Hansen TW, Hagen CW., Nanotechnology 22(11), 2011
PMID: 21301081
X-ray holographic microscopy with zone plates applied to biological samples in the water window using 3rd harmonic radiation from the free-electron laser FLASH.
Gorniak T, Heine R, Mancuso AP, Staier F, Christophis C, Pettitt ME, Sakdinawat A, Treusch R, Guerassimova N, Feldhaus J, Gutt C, Grübel G, Eisebitt S, Beyer A, Gölzhäuser A, Weckert E, Grunze M, Vartanyants IA, Rosenhahn A., Opt Express 19(12), 2011
PMID: 21716334
A graphene oxide-carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials.
Zhang L, Zhang H, Zhou R, Chen Z, Li Q, Fan S, Ge G, Liu R, Jiang K., Nanotechnology 22(38), 2011
PMID: 21878720
Mechanical characterization of carbon nanomembranes from self-assembled monolayers.
Zhang X, Beyer A, Gölzhäuser A., Beilstein J Nanotechnol 2(), 2011
PMID: 22259767
Holey nanosheets by patterning with UV/ozone.
Nottbohm CT, Wiegmann S, Beyer A, Gölzhäuser A., Phys Chem Chem Phys 12(17), 2010
PMID: 20407702
Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
Rhinow D, Vonck J, Schranz M, Beyer A, Gölzhäuser A, Hampp N., Phys Chem Chem Phys 12(17), 2010
PMID: 20407705
Janus nanomembranes: a generic platform for chemistry in two dimensions.
Zheng Z, Nottbohm CT, Turchanin A, Muzik H, Beyer A, Heilemann M, Sauer M, Gölzhäuser A., Angew Chem Int Ed Engl 49(45), 2010
PMID: 20886488
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Gölzhäuser A., Small 5(23), 2009
PMID: 19787678
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Gölzhäuser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967

21 References

Daten bereitgestellt von Europe PubMed Central.

Sub-Angstrom high-resolution transmission electron microscopy at 300 keV.
O'Keefe MA, Hetherington CJ, Wang YC, Nelson EC, Turner JH, Kisielowski C, Malm JO, Mueller R, Ringnalda J, Pan M, Thust A., Ultramicroscopy 89(4), 2001
PMID: 11766980

O’Keefe, Philos. Mag. B—Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Properties 81(), 2001

Konkar, Nanoletters 5(), 2005
Two-dimensional atomic crystals.
Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK., Proc. Natl. Acad. Sci. U.S.A. 102(30), 2005
PMID: 16027370
The rise of graphene.
Geim AK, Novoselov KS., Nat Mater 6(3), 2007
PMID: 17330084
The structure of suspended graphene sheets.
Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S., Nature 446(7131), 2007
PMID: 17330039
Formation and Structure of Self-Assembled Monolayers.
Ulman A., Chem. Rev. 96(4), 1996
PMID: 11848802

Schreiber, J. Phys.: Condens. Matter 16(), 2004
Self-assembled monolayers of thiolates on metals as a form of nanotechnology.
Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM., Chem. Rev. 105(4), 2005
PMID: 15826011

Gölzhäuser, Adv. Mater. 13(), 2001
Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces.
Biebricher A, Paul A, Tinnefeld P, Golzhauser A, Sauer M., J. Biotechnol. 112(1-2), 2004
PMID: 15288945

Eck, Adv. Mater. 17(), 2005

Geyer, Appl. Phys. Lett. 75(), 1999

Küller, Appl. Phys. Lett. 82(), 2003

Turchanin, Appl. Phys. Lett. 90(), 2007

AUTHOR UNKNOWN, 0
Colloidal nanocrystal shape and size control: the case of cobalt.
Puntes VF, Krishnan KM, Alivisatos AP., Science 291(5511), 2001
PMID: 11251109

Schmidt, Chem. Rev. 92(), 1992
Surfactant-free synthesis and functionalization of gold nanoparticles.
Schulz-Dobrick M, Sarathy KV, Jansen M., J. Am. Chem. Soc. 127(37), 2005
PMID: 16159272
Atomic-resolution imaging of oxygen in perovskite ceramics.
Jia CL, Lentzen M, Urban K., Science 299(5608), 2003
PMID: 12574624

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 18406532
PubMed | Europe PMC

Suchen in

Google Scholar