On the application of mixed hidden Markov models to multiple behavioural time series

Schliehe-Diecks S, Kappeler PM, Langrock R (2012)
Interface Focus 2(2): 180-189.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Publishing Year
PUB-ID

Cite this

Schliehe-Diecks S, Kappeler PM, Langrock R. On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus. 2012;2(2):180-189.
Schliehe-Diecks, S., Kappeler, P. M., & Langrock, R. (2012). On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus, 2(2), 180-189. doi:10.1098/rsfs.2011.0077
Schliehe-Diecks, S., Kappeler, P. M., and Langrock, R. (2012). On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus 2, 180-189.
Schliehe-Diecks, S., Kappeler, P.M., & Langrock, R., 2012. On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus, 2(2), p 180-189.
S. Schliehe-Diecks, P.M. Kappeler, and R. Langrock, “On the application of mixed hidden Markov models to multiple behavioural time series”, Interface Focus, vol. 2, 2012, pp. 180-189.
Schliehe-Diecks, S., Kappeler, P.M., Langrock, R.: On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus. 2, 180-189 (2012).
Schliehe-Diecks, S., Kappeler, P. M., and Langrock, Roland. “On the application of mixed hidden Markov models to multiple behavioural time series”. Interface Focus 2.2 (2012): 180-189.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

An analysis of pilot whale vocalization activity using hidden Markov models.
Popov V, Langrock R, DeRuiter SL, Visser F., J Acoust Soc Am 141(1), 2017
PMID: 28147612
Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther.
van de Kerk M, Onorato DP, Criffield MA, Bolker BM, Augustine BC, McKinley SA, Oli MK., J Anim Ecol 84(2), 2015
PMID: 25251870
Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.
Phillips JS, Patterson TA, Leroy B, Pilling GM, Nicol SJ., Ecol Appl 25(5), 2015
PMID: 26485953
Predicting the effects of human developments on individual dolphins to understand potential long-term population consequences.
Pirotta E, Harwood J, Thompson PM, New L, Cheney B, Arso M, Hammond PS, Donovan C, Lusseau D., Proc Biol Sci 282(1818), 2015
PMID: 26511044
Modeling the Diving Behavior of Whales: A Latent-Variable Approach with Feedback and Semi-Markovian Components
Langrock R, Marques TA, Baird RW, Thomas L., J Agric Biol Environ Stat 19(1), 2014
PMID: IND500735807
Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms.
Langrock R, Swihart BJ, Caffo BS, Punjabi NM, Crainiceanu CM., Stat Med 32(19), 2013
PMID: 23348835
Mathematical and theoretical ecology: linking models with ecological processes.
Codling EA, Dumbrell AJ., Interface Focus 2(2), 2012
PMID: PMC3293197
Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions.
Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM., Ecology 93(11), 2012
PMID: 23236905

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23565332
PubMed | Europe PMC

Search this title in

Google Scholar