On the application of mixed hidden Markov models to multiple behavioural time series

Schliehe-Diecks S, Kappeler PM, Langrock R (2012)
Interface Focus 2(2): 180-189.

Download
No fulltext has been uploaded. References only!
Journal Article | Published | English

No fulltext has been uploaded

Author
; ;
Publishing Year
PUB-ID

Cite this

Schliehe-Diecks S, Kappeler PM, Langrock R. On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus. 2012;2(2):180-189.
Schliehe-Diecks, S., Kappeler, P. M., & Langrock, R. (2012). On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus, 2(2), 180-189. doi:10.1098/rsfs.2011.0077
Schliehe-Diecks, S., Kappeler, P. M., and Langrock, R. (2012). On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus 2, 180-189.
Schliehe-Diecks, S., Kappeler, P.M., & Langrock, R., 2012. On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus, 2(2), p 180-189.
S. Schliehe-Diecks, P.M. Kappeler, and R. Langrock, “On the application of mixed hidden Markov models to multiple behavioural time series”, Interface Focus, vol. 2, 2012, pp. 180-189.
Schliehe-Diecks, S., Kappeler, P.M., Langrock, R.: On the application of mixed hidden Markov models to multiple behavioural time series. Interface Focus. 2, 180-189 (2012).
Schliehe-Diecks, S., Kappeler, P. M., and Langrock, Roland. “On the application of mixed hidden Markov models to multiple behavioural time series”. Interface Focus 2.2 (2012): 180-189.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

An analysis of pilot whale vocalization activity using hidden Markov models.
Popov V, Langrock R, DeRuiter SL, Visser F., J. Acoust. Soc. Am. 141(1), 2017
PMID: 28147612
Predicting the effects of human developments on individual dolphins to understand potential long-term population consequences.
Pirotta E, Harwood J, Thompson PM, New L, Cheney B, Arso M, Hammond PS, Donovan C, Lusseau D., Proc. Biol. Sci. 282(1818), 2015
PMID: 26511044
Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.
Phillips JS, Patterson TA, Leroy B, Pilling GM, Nicol SJ., Ecol Appl 25(5), 2015
PMID: 26485953
Hidden semi-Markov models reveal multiphasic movement of the endangered Florida panther.
van de Kerk M, Onorato DP, Criffield MA, Bolker BM, Augustine BC, McKinley SA, Oli MK., J Anim Ecol 84(2), 2015
PMID: 25251870
Modeling the Diving Behavior of Whales: A Latent-Variable Approach with Feedback and Semi-Markovian Components
Langrock R, Marques TA, Baird RW, Thomas L., J Agric Biol Environ Stat 19(1), 2014
PMID: IND500735807
Combining hidden Markov models for comparing the dynamics of multiple sleep electroencephalograms.
Langrock R, Swihart BJ, Caffo BS, Punjabi NM, Crainiceanu CM., Stat Med 32(19), 2013
PMID: 23348835
Mathematical and theoretical ecology: linking models with ecological processes.
Codling EA, Dumbrell AJ., Interface Focus 2(2), 2012
PMID: PMC3293197
Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions.
Langrock R, King R, Matthiopoulos J, Thomas L, Fortin D, Morales JM., Ecology 93(11), 2012
PMID: 23236905

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23565332
PubMed | Europe PMC

Search this title in

Google Scholar