Electron beam controlled covalent attachment of small organic molecules to graphene

Markevich A, Kurasch S, Lehtinen O, Reimer O, Feng X, Muellen K, Turchanin A, Khlobystov AN, Kaiser U, Besley E (2016)
NANOSCALE 8(5): 2711-2719.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C=C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The "standing up" molecules, covalently anchored to graphene, exhibit two types of oscillatory motion bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.
Erscheinungsjahr
Zeitschriftentitel
NANOSCALE
Band
8
Zeitschriftennummer
5
Seite
2711-2719
ISSN
eISSN
PUB-ID

Zitieren

Markevich A, Kurasch S, Lehtinen O, et al. Electron beam controlled covalent attachment of small organic molecules to graphene. NANOSCALE. 2016;8(5):2711-2719.
Markevich, A., Kurasch, S., Lehtinen, O., Reimer, O., Feng, X., Muellen, K., Turchanin, A., et al. (2016). Electron beam controlled covalent attachment of small organic molecules to graphene. NANOSCALE, 8(5), 2711-2719. doi:10.1039/c5nr07539d
Markevich, A., Kurasch, S., Lehtinen, O., Reimer, O., Feng, X., Muellen, K., Turchanin, A., Khlobystov, A. N., Kaiser, U., and Besley, E. (2016). Electron beam controlled covalent attachment of small organic molecules to graphene. NANOSCALE 8, 2711-2719.
Markevich, A., et al., 2016. Electron beam controlled covalent attachment of small organic molecules to graphene. NANOSCALE, 8(5), p 2711-2719.
A. Markevich, et al., “Electron beam controlled covalent attachment of small organic molecules to graphene”, NANOSCALE, vol. 8, 2016, pp. 2711-2719.
Markevich, A., Kurasch, S., Lehtinen, O., Reimer, O., Feng, X., Muellen, K., Turchanin, A., Khlobystov, A.N., Kaiser, U., Besley, E.: Electron beam controlled covalent attachment of small organic molecules to graphene. NANOSCALE. 8, 2711-2719 (2016).
Markevich, Alexander, Kurasch, Simon, Lehtinen, Ossi, Reimer, Oliver, Feng, Xinliang, Muellen, Klaus, Turchanin, Andrey, Khlobystov, Andrei N., Kaiser, Ute, and Besley, Elena. “Electron beam controlled covalent attachment of small organic molecules to graphene”. NANOSCALE 8.5 (2016): 2711-2719.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Electron microscopy of polyoxometalate ions on graphene by electrospray ion beam deposition.
Vats N, Rauschenbach S, Sigle W, Sen S, Abb S, Portz A, Dürr M, Burghard M, van Aken PA, Kern K., Nanoscale 10(10), 2018
PMID: 29485651
Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback.
Jesse S, Hudak BM, Zarkadoula E, Song J, Maksov A, Fuentes-Cabrera M, Ganesh P, Kravchenko I, Snijders PC, Lupini AR, Borisevich AY, Kalinin SV., Nanotechnology 29(25), 2018
PMID: 29616980
New Frontiers in Electron Beam-Driven Chemistry in and around Graphene.
Rummeli MH, Ta HQ, Mendes RG, Gonzalez-Martinez IG, Zhao L, Gao J, Fu L, Gemming T, Bachmatiuk A, Liu Z., Adv Mater (), 2018
PMID: 29888408
Stop-Frame Filming and Discovery of Reactions at the Single-Molecule Level by Transmission Electron Microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Markevich AV, Kurasch S, Reimer O, Walker KE, Rance GA, Feng X, Müllen K, Turchanin A, Lebedeva MA, Majouga AG, Nenajdenko VG, Kaiser U, Besley E, Khlobystov AN., ACS Nano 11(3), 2017
PMID: 28191929

48 References

Daten bereitgestellt von Europe PubMed Central.

Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J., Nano Lett. 9(1), 2009
PMID: 19046078
Chemistry: The trials of new carbon.
Van Noorden R., Nature 469(7328), 2011
PMID: 21209637
Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal.
Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS., ACS Nano 4(7), 2010
PMID: 20552997
Selective n-type doping of graphene by photo-patterned gold nanoparticles.
Huh S, Park J, Kim KS, Hong BH, Kim SB., ACS Nano 5(5), 2011
PMID: 21466191
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FH, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SR, Tannock Q, Lofwander T, Kinaret J., Nanoscale 7(11), 2015
PMID: 25707682
Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.
Park J, Lee WH, Huh S, Sim SH, Kim SB, Cho K, Hong BH, Kim KS., J Phys Chem Lett 2(8), 2011
PMID: 26295616
Single-gate bandgap opening of bilayer graphene by dual molecular doping.
Park J, Jo SB, Yu YJ, Kim Y, Yang JW, Lee WH, Kim HH, Hong BH, Kim P, Cho K, Kim KS., Adv. Mater. Weinheim 24(3), 2011
PMID: 22161977
A self-consistent theory for graphene transport.
Adam S, Hwang EH, Galitski VM, Das Sarma S., Proc. Natl. Acad. Sci. U.S.A. 104(47), 2007
PMID: 18003926

Martin, Nat. Phys. 4(), 2008

Kim, EPL 84(), 2008

Chen, Nat. Phys. 4(), 2008

Zhang, Nat. Phys. 5(), 2009
Approaching ballistic transport in suspended graphene.
Du X, Skachko I, Barker A, Andrei EY., Nat Nanotechnol 3(8), 2008
PMID: 18685637
Intrinsic response of graphene vapor sensors.
Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson AT., Nano Lett. 9(4), 2009
PMID: 19267449
Dielectric screening enhanced performance in graphene FET.
Chen F, Xia J, Ferry DK, Tao N., Nano Lett. 9(7), 2009
PMID: 19496554
Atomic structure of graphene on SiO2.
Ishigami M, Chen JH, Cullen WG, Fuhrer MS, Williams ED., Nano Lett. 7(6), 2007
PMID: 17497819
Radiation damage in the TEM and SEM.
Egerton RF, Li P, Malac M., Micron 35(6), 2004
PMID: 15120123
Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.
Wang J, Chen Z, Chen B., Environ. Sci. Technol. 48(9), 2014
PMID: 24678934
Interactions and chemical transformations of coronene inside and outside carbon nanotubes.
Botka B, Fustos ME, Tohati HM, Nemeth K, Klupp G, Szekrenyes Z, Kocsis D, Utczas M, Szekely E, Vaczi T, Tarczay G, Hackl R, Chamberlain TW, Khlobystov AN, Kamaras K., Small 10(7), 2013
PMID: 24167020
Isotope substitution extends the lifetime of organic molecules in transmission electron microscopy.
Chamberlain TW, Biskupek J, Skowron ST, Bayliss PA, Bichoutskaia E, Kaiser U, Khlobystov AN., Small 11(5), 2014
PMID: 25208335
Stability due to peripheral halogenation in phthalocyanine complexes.
Koshino M, Kurata H, Isoda S., Microsc. Microanal. 13(2), 2007
PMID: 17367549

Kobayashi, Bull. Inst. Chem. Res., Kyoto Univ. 53(), 1975

Dong, Nature 355(), 1992
Photochemical reactivity of graphene.
Liu H, Ryu S, Chen Z, Steigerwald ML, Nuckolls C, Brus LE., J. Am. Chem. Soc. 131(47), 2009
PMID: 19902927

Perdew, Phys. Rev. Lett. 78(), 1997

Boys, Mol. Phys. 19(), 1970

Redhead, Vacuum 12(), 1962

Zacharia, Phys. Rev. B: Condens. Matter Mater. Phys. 69(), 2004

Falconer, J. Catal. 48(), 1977

Berland, Phys. Rev. B: Condens. Matter 87(), 2013

Björk, J. Phys. Chem. Lett. 1(), 2010

Boukhvalov, Phys. Rev. B: Condens. Matter Mater. Phys. 77(), 2008

Ferro, Phys. Rev. B: Condens. Matter Mater. Phys. 78(), 2008

Boukhvalov, J. Phys.: Condens. Matter 21(), 2009

Stuart, J. Chem. Phys. 112(), 2000

Algara-Siller, Appl. Phys. Lett. 104(), 2014

Jones, Semicond. Semimetals 51(), 1998

Hartwigsen, Phys. Rev. B: Condens. Matter 58(), 1998

Monkhorst, Phys. Rev. B: Solid State 13(), 1976

Plimpton, J. Comput. Phys. 117(), 1995

Koch, 2002
A new linear transfer theory and characterization method for image detectors. Part II: experiment.
Lubk A, Roder F, Niermann T, Gatel C, Joulie S, Houdellier F, Magen C, Hytch MJ., Ultramicroscopy 115(), 2012
PMID: 22424716
Large-area synthesis of high-quality and uniform graphene films on copper foils.
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS., Science 324(5932), 2009
PMID: 19423775
All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications.
Woszczyna M, Winter A, Grothe M, Willunat A, Wundrack S, Stosch R, Weimann T, Ahlers F, Turchanin A., Adv. Mater. Weinheim 26(28), 2014
PMID: 24862387

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26757842
PubMed | Europe PMC

Suchen in

Google Scholar