Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions

Wilhelm RA, Gruber E, Ritter R, Heller R, Beyer A, Turchanin A, Klingner N, Huebner R, Stoeger-Pollach M, Vieker H, Hlawacek G, et al. (2015)
2D Materials 2(3): 035009.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
Cross-linking of a self-assembled monolayer of 1,1'-biphenyl-4-thiol by low energy electron irradiation leads to the formation of a carbon nanomembrane, that is only 1 nm thick. Here we study the perforation of these freestanding membranes by slow highly charged ion irradiation with respect to the pore formation yield. It is found that a threshold in potential energy of the highly charged ions of about 10 keV must be exceeded in order to form round pores with tunable diameters in the range of 5-15 nm. Above this energy threshold, the efficiency for a single ion to form a pore increases from 70% to nearly 100% with increasing charge. These findings are verified by two independent methods, namely the analysis of individual membranes stacked together during irradiation and the detailed analysis of exit charge state spectra utilizing an electrostatic analyzer.
Publishing Year
ISSN
PUB-ID

Cite this

Wilhelm RA, Gruber E, Ritter R, et al. Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions. 2D Materials. 2015;2(3): 035009.
Wilhelm, R. A., Gruber, E., Ritter, R., Heller, R., Beyer, A., Turchanin, A., Klingner, N., et al. (2015). Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions. 2D Materials, 2(3): 035009.
Wilhelm, R. A., Gruber, E., Ritter, R., Heller, R., Beyer, A., Turchanin, A., Klingner, N., Huebner, R., Stoeger-Pollach, M., Vieker, H., et al. (2015). Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions. 2D Materials 2:035009.
Wilhelm, R.A., et al., 2015. Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions. 2D Materials, 2(3): 035009.
R.A. Wilhelm, et al., “Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions”, 2D Materials, vol. 2, 2015, : 035009.
Wilhelm, R.A., Gruber, E., Ritter, R., Heller, R., Beyer, A., Turchanin, A., Klingner, N., Huebner, R., Stoeger-Pollach, M., Vieker, H., Hlawacek, G., Gölzhäuser, A., Facsko, S., Aumayr, F.: Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions. 2D Materials. 2, : 035009 (2015).
Wilhelm, Richard A., Gruber, Elisabeth, Ritter, Robert, Heller, Rene, Beyer, André, Turchanin, Andrey, Klingner, Nico, Huebner, Rene, Stoeger-Pollach, Michael, Vieker, Henning, Hlawacek, Gregor, Gölzhäuser, Armin, Facsko, Stefan, and Aumayr, Friedrich. “Threshold and efficiency for perforation of 1nm thick carbon nanomembranes with slow highly charged ions”. 2D Materials 2.3 (2015): 035009.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar