Breaking object correspondence across saccadic eye movements deteriorates object recognition

Poth CH, Herwig A, Schneider WX (2015)
Frontiers in Systems Neuroscience 9: 176.

Download
OA 1.40 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
Visual perception is based on information processing during periods of eye fixations that are interrupted by fast saccadic eye movements. The ability to sample and relate information on task-relevant objects across fixations implies that correspondence between presaccadic and postsaccadic objects is established. Postsaccadic object information usually updates and overwrites information on the corresponding presaccadic object. The presaccadic object representation is then lost. In contrast, the presaccadic object is conserved when object correspondence is broken. This helps transsaccadic memory but it may impose attentional costs on object recognition. Therefore, we investigated how breaking object correspondence across the saccade affects postsaccadic object recognition. In Experiment 1, object correspondence was broken by a brief postsaccadic blank screen. Observers made a saccade to a peripheral object which was displaced during the saccade. This object reappeared either immediately after the saccade or after the blank screen. Within the postsaccadic object, a letter was briefly presented (terminated by a mask). Observers reported displacement direction and letter identity in different blocks. Breaking object correspondence by blanking improved displacement identification but deteriorated postsaccadic letter recognition. In Experiment 2, object correspondence was broken by changing the object’s contrast-polarity. There were no object displacements and observers only reported letter identity. Again, breaking object correspondence deteriorated postsaccadic letter recognition. These findings identify transsaccadic object correspondence as a key determinant of object recognition across the saccade. This is in line with the recent hypothesis that breaking object correspondence results in separate representations of presaccadic and postsaccadic objects which then compete for limited attentional processing resources (Schneider, 2013). Postsaccadic object recognition is then deteriorated because less resources are available for processing postsaccadic objects.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Systems Neuroscience
Band
9
Artikelnummer
176
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Poth CH, Herwig A, Schneider WX. Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience. 2015;9: 176.
Poth, C. H., Herwig, A., & Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9, 176. doi:10.3389/fnsys.2015.00176
Poth, C. H., Herwig, A., and Schneider, W. X. (2015). Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience 9:176.
Poth, C.H., Herwig, A., & Schneider, W.X., 2015. Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience, 9: 176.
C.H. Poth, A. Herwig, and W.X. Schneider, “Breaking object correspondence across saccadic eye movements deteriorates object recognition”, Frontiers in Systems Neuroscience, vol. 9, 2015, : 176.
Poth, C.H., Herwig, A., Schneider, W.X.: Breaking object correspondence across saccadic eye movements deteriorates object recognition. Frontiers in Systems Neuroscience. 9, : 176 (2015).
Poth, Christian H., Herwig, Arvid, and Schneider, Werner X. “Breaking object correspondence across saccadic eye movements deteriorates object recognition”. Frontiers in Systems Neuroscience 9 (2015): 176.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2016-02-24T13:03:14Z

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Object discrepancy modulates feature prediction across eye movements.
Köller CP, Poth CH, Herwig A., Psychol Res (), 2018
PMID: 29387939
Ultrahigh temporal resolution of visual presentation using gaming monitors and G-Sync.
Poth CH, Foerster RM, Behler C, Schwanecke U, Schneider WX, Botsch M., Behav Res Methods 50(1), 2018
PMID: 29340970
Calibration of peripheral perception of shape with and without saccadic eye movements.
Paeye C, Collins T, Cavanagh P, Herwig A., Atten Percept Psychophys 80(3), 2018
PMID: 29327331
Remapping versus short-term memory in visual stability across saccades.
Balp R, Waszak F, Collins T., Atten Percept Psychophys (), 2018
PMID: 30306391

54 References

Daten bereitgestellt von Europe PubMed Central.

Selection for action: Some behavioral and neurophysiological considerations of attention and action
Allport A.., 1987
The Psychophysics Toolbox.
Brainard D.., 1997
Failure to detect displacement of the visual world during saccadic eye movements.
Bridgeman B, Hendry D, Stark L., Vision Res. 15(6), 1975
PMID: 1138489
A theory of visual stability across saccadic eye movements.
Bridgeman B., van A., Velichkovsky B.., 1994
A theory of visual attention.
Bundesen C., Psychol Rev 97(4), 1990
PMID: 2247540
A neural theory of visual attention: bridging cognition and neurophysiology.
Bundesen C, Habekost T, Kyllingsbaek S., Psychol Rev 112(2), 2005
PMID: 15783288
Visual stability based on remapping of attention pointers.
Cavanagh P, Hunt AR, Afraz A, Rolfs M., Trends Cogn. Sci. (Regul. Ed.) 14(4), 2010
PMID: 20189870

Cohen J.., 1988
The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox.
Cornelissen FW, Peters EM, Palmer J., Behav Res Methods Instrum Comput 34(4), 2002
PMID: 12564564
Transsaccadic identification of highly similar artificial shapes.
Demeyer M, De Graef P, Wagemans J, Verfaillie K., J Vis 9(4), 2009
PMID: 19757937
Object form discontinuity facilitates displacement discrimination across saccades.
Demeyer M, De Graef P, Wagemans J, Verfaillie K., J Vis 10(6), 2010
PMID: 20884566
Neural mechanisms of selective visual attention.
Desimone R, Duncan J., Annu. Rev. Neurosci. 18(), 1995
PMID: 7605061
Immediate post-saccadic information mediates space constancy.
Deubel H, Bridgeman B, Schneider WX., Vision Res. 38(20), 1998
PMID: 9893822
Perceptual stability and postsaccadic visual information: can man bridge a gap?
Deubel H., Schneider W.., 1994
Postsaccadic target blanking prevents saccadic suppression of image displacement.
Deubel H, Schneider WX, Bridgeman B., Vision Res. 36(7), 1996
PMID: 8736258
Transsaccadic memory of position and form.
Deubel H, Schneider WX, Bridgeman B., Prog. Brain Res. 140(), 2002
PMID: 12508589
The updating of the representation of visual space in parietal cortex by intended eye movements.
Duhamel JR, Colby CL, Goldberg ME., Science 255(5040), 1992
PMID: 1553535
What's new in visual masking?
Enns JT, Di Lollo V ., Trends Cogn. Sci. (Regul. Ed.) 4(9), 2000
PMID: 10962616
Salience, relevance, and firing: a priority map for target selection.
Fecteau JH, Munoz DP., Trends Cogn. Sci. (Regul. Ed.) 10(8), 2006
PMID: 16843702

Findlay J., Gilchrist I.., 2003
A near-optimal integration of orientation information across saccades.
Ganmor E., Landy M., Simoncelli E.., 2015
Roles of object-file review and type priming in visual identification within and across eye fixations.
Henderson JM, Anes MD., J Exp Psychol Hum Percept Perform 20(4), 1994
PMID: 8083637
Transsaccadic integration and perceptual continuity.
Herwig A.., 2015
Visual perception and saccadic eye movements.
Ibbotson M, Krekelberg B., Curr. Opin. Neurobiol. 21(4), 2011
PMID: 21646014
Integration and accumulation of information across saccadic eye movements
Irwin D., Andrews R.., 1996
Eye movements, attention, and trans-saccadic memory.
Irwin D., Gordon R.., 1998
The reviewing of object files: object-specific integration of information.
Kahneman D, Treisman A, Gibbs BJ., Cogn Psychol 24(2), 1992
PMID: 1582172
What’s new in Psychtoolbox-3?
Kleiner M., Brainard D., Pelli D.., 2007
The Influence of Gaze Control on Visual Perception: Eye Movements and Visual Stability.
Krock RM, Moore T., Cold Spring Harb. Symp. Quant. Biol. 79(), 2014
PMID: 25752313

Land M., Tatler B.., 2009
Visual attention and stability.
Mathot S, Theeuwes J., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366(1564), 2011
PMID: 21242140
Confidence intervals from normalized data: a correction to Cousineau (2005)
Morey R.., 2008
Beyond capacity: a functional view of attention
Neumann O.., 1987
Brain processing of visual information during fast eye movements maintains motor performance.
Panouilleres M, Gaveau V, Socasau C, Urquizar C, Pelisson D., PLoS ONE 8(1), 2013
PMID: 23382932
Measuring and modeling attentional dwell time.
Petersen A, Kyllingsbæk S, Bundesen C., Psychon Bull Rev 19(6), 2012
PMID: 22847596
Effects of monitoring for visual events on distinct components of attention.
Poth CH, Petersen A, Bundesen C, Schneider WX., Front Psychol 5(), 2014
PMID: 25191303
Bayesian t tests for accepting and rejecting the null hypothesis.
Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G., Psychon Bull Rev 16(2), 2009
PMID: 19293088
VAM: a neuro-cognitive model for visual attention control of segmentation, object recognition and space-based motor action.
Schneider W.., 1995
Selective visual processing across competition episodes: a theory of task-driven visual attention and working memory.
Schneider WX., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368(1628), 2013
PMID: 24018722
Selection-for-perception and selection-for-spatial-motor-action are coupled by visual attention: a review of recent findings and new evidence from stimulus-driven saccade control
Schneider W., Deubel H.., 2002
An object-mediated updating account of insensitivity to transsaccadic change.
Tas AC, Moore CM, Hollingworth A., J Vis 12(11), 2012
PMID: 23092946
Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention.
Wischnewski M., Belardinelli A., Schneider W., Steil J.., 2010
Integrating inhomogeneous processing and proto-object formation in a computational model of visual attention.
Wischnewski M., Steil J., Kehrer L., Schneider W.., 2009
Guided Search 2.0 A revised model of visual search.
Wolfe JM., Psychon Bull Rev 1(2), 1994
PMID: 24203471
Neuronal mechanisms of visual stability.
Wurtz RH., Vision Res. 48(20), 2008
PMID: 18513781
Brain mechanisms for active Vision.
Wurtz R.., 2015
The what, where, and why of priority maps and their interactions with visual working memory.
Zelinsky GJ, Bisley JW., Ann. N. Y. Acad. Sci. 1339(), 2015
PMID: 25581477

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26732235
PubMed | Europe PMC

Suchen in

Google Scholar