A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

Bertrand O, Lindemann JP, Egelhaaf M (2015)
PLoS Computational Biology 11(11): e1004339.

Download
OA
Journal Article | Published | English
Abstract
Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects.
Publishing Year
ISSN
eISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Bertrand O, Lindemann JP, Egelhaaf M. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Computational Biology. 2015;11(11): e1004339.
Bertrand, O., Lindemann, J. P., & Egelhaaf, M. (2015). A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Computational Biology, 11(11): e1004339.
Bertrand, O., Lindemann, J. P., and Egelhaaf, M. (2015). A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Computational Biology 11:e1004339.
Bertrand, O., Lindemann, J.P., & Egelhaaf, M., 2015. A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Computational Biology, 11(11): e1004339.
O. Bertrand, J.P. Lindemann, and M. Egelhaaf, “A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes”, PLoS Computational Biology, vol. 11, 2015, : e1004339.
Bertrand, O., Lindemann, J.P., Egelhaaf, M.: A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes. PLoS Computational Biology. 11, : e1004339 (2015).
Bertrand, Olivier, Lindemann, Jens Peter, and Egelhaaf, Martin. “A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes”. PLoS Computational Biology 11.11 (2015): e1004339.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-03-02T08:13:22Z

This data publication is cited in the following publications:
This publication cites the following data publications:
2757868
A bio-inspired collision avoidance model leads to common routes
Bertrand O, Lindemann JP, Egelhaaf M (2015)
Bielefeld University.

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 26583771
PubMed | Europe PMC

Search this title in

Google Scholar