Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii

Tsai C-H, Zienkiewicz K, Amstutz CL, Brink B, Warakanont J, Roston R, Benning C (2015)
The Plant Journal 83(4): 650-660.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C.reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed. Significance Statement Lipid droplets (LDs) are dynamic organelles of virtually every cell type and are involved in numerous metabolic and physiological processes. Many aspects of LD biology, particularly in photosynthetic cells remain obscure. Using Chlamydomonas reinhardtii as a model, we uncovered an interaction of microtubules with the major lipid droplet protein affecting protein targeting to LDs. We also provide evidence for a specialized polar lipid composition of LDs suggesting an origin of LDs from chloroplast envelope membranes.
Erscheinungsjahr
Zeitschriftentitel
The Plant Journal
Band
83
Zeitschriftennummer
4
Seite
650-660
ISSN
PUB-ID

Zitieren

Tsai C-H, Zienkiewicz K, Amstutz CL, et al. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal. 2015;83(4):650-660.
Tsai, C. - H., Zienkiewicz, K., Amstutz, C. L., Brink, B., Warakanont, J., Roston, R., & Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal, 83(4), 650-660. doi:10.1111/tpj.12917
Tsai, C. - H., Zienkiewicz, K., Amstutz, C. L., Brink, B., Warakanont, J., Roston, R., and Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal 83, 650-660.
Tsai, C.-H., et al., 2015. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal, 83(4), p 650-660.
C.-H. Tsai, et al., “Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii”, The Plant Journal, vol. 83, 2015, pp. 650-660.
Tsai, C.-H., Zienkiewicz, K., Amstutz, C.L., Brink, B., Warakanont, J., Roston, R., Benning, C.: Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal. 83, 650-660 (2015).
Tsai, Chia-Hong, Zienkiewicz, Krzysztof, Amstutz, Cynthia L., Brink, Benedikt, Warakanont, Jaruswan, Roston, Rebecca, and Benning, Christoph. “Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii”. The Plant Journal 83.4 (2015): 650-660.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.
Couso I, Pérez-Pérez ME, Martínez-Force E, Kim HS, He Y, Umen JG, Crespo JL., J Exp Bot 69(6), 2018
PMID: 29053817
Tobacco pollen tubes - a fast and easy tool for studying lipid droplet association of plant proteins.
Müller AO, Blersch KF, Gippert AL, Ischebeck T., Plant J 89(5), 2017
PMID: 27943529
Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions.
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Bréhélin C., Front Plant Sci 8(), 2017
PMID: 28611809
Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa.
Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I., BMC Plant Biol 17(1), 2017
PMID: 28587627
Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds.
Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT., Plant J 92(6), 2017
PMID: 29083105
Fatty Acid and Lipid Transport in Plant Cells.
Li N, Xu C, Li-Beisson Y, Philippar K., Trends Plant Sci 21(2), 2016
PMID: 26616197
The plant lipidome in human and environmental health.
Horn PJ, Benning C., Science 353(6305), 2016
PMID: 27634522
Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.
Jaeger D, Pilger C, Hachmeister H, Oberländer E, Wördenweber R, Wichmann J, Mussgnug JH, Huser T, Kruse O., Sci Rep 6(), 2016
PMID: 27767024

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26096381
PubMed | Europe PMC

Suchen in

Google Scholar