Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii

Tsai C-H, Zienkiewicz K, Amstutz CL, Brink B, Warakanont J, Roston R, Benning C (2015)
The Plant Journal 83(4): 650-660.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C.reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed. Significance Statement Lipid droplets (LDs) are dynamic organelles of virtually every cell type and are involved in numerous metabolic and physiological processes. Many aspects of LD biology, particularly in photosynthetic cells remain obscure. Using Chlamydomonas reinhardtii as a model, we uncovered an interaction of microtubules with the major lipid droplet protein affecting protein targeting to LDs. We also provide evidence for a specialized polar lipid composition of LDs suggesting an origin of LDs from chloroplast envelope membranes.
Publishing Year
ISSN
PUB-ID

Cite this

Tsai C-H, Zienkiewicz K, Amstutz CL, et al. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal. 2015;83(4):650-660.
Tsai, C. - H., Zienkiewicz, K., Amstutz, C. L., Brink, B., Warakanont, J., Roston, R., & Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal, 83(4), 650-660. doi:10.1111/tpj.12917
Tsai, C. - H., Zienkiewicz, K., Amstutz, C. L., Brink, B., Warakanont, J., Roston, R., and Benning, C. (2015). Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal 83, 650-660.
Tsai, C.-H., et al., 2015. Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal, 83(4), p 650-660.
C.-H. Tsai, et al., “Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii”, The Plant Journal, vol. 83, 2015, pp. 650-660.
Tsai, C.-H., Zienkiewicz, K., Amstutz, C.L., Brink, B., Warakanont, J., Roston, R., Benning, C.: Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii. The Plant Journal. 83, 650-660 (2015).
Tsai, Chia-Hong, Zienkiewicz, Krzysztof, Amstutz, Cynthia L., Brink, Benedikt, Warakanont, Jaruswan, Roston, Rebecca, and Benning, Christoph. “Dynamics of protein and polar lipid recruitment during lipid droplet assembly in Chlamydomonas reinhardtii”. The Plant Journal 83.4 (2015): 650-660.
This data publication is cited in the following publications:
This publication cites the following data publications:

10 Citations in Europe PMC

Data provided by Europe PubMed Central.

Autophagic flux is required for the synthesis of triacylglycerols and ribosomal protein turnover in Chlamydomonas.
Couso I, Perez-Perez ME, Martinez-Force E, Kim HS, He Y, Umen JG, Crespo JL., J. Exp. Bot. (), 2017
PMID: 29053817
Proteomic Analysis of Lipid Droplets from Arabidopsis Aging Leaves Brings New Insight into Their Biogenesis and Functions.
Brocard L, Immel F, Coulon D, Esnay N, Tuphile K, Pascal S, Claverol S, Fouillen L, Bessoule JJ, Brehelin C., Front Plant Sci 8(), 2017
PMID: 28611809
Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa.
Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I., BMC Plant Biol. 17(1), 2017
PMID: 28587627
Tobacco pollen tubes - a fast and easy tool for studying lipid droplet association of plant proteins.
Muller AO, Blersch KF, Gippert AL, Ischebeck T., Plant J. 89(5), 2017
PMID: 27943529
Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy.
Jaeger D, Pilger C, Hachmeister H, Oberlander E, Wordenweber R, Wichmann J, Mussgnug JH, Huser T, Kruse O., Sci Rep 6(), 2016
PMID: 27767024
The plant lipidome in human and environmental health.
Horn PJ, Benning C., Science 353(6305), 2016
PMID: 27634522
Fatty Acid and Lipid Transport in Plant Cells.
Li N, Xu C, Li-Beisson Y, Philippar K., Trends Plant Sci. 21(2), 2016
PMID: 26616197

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 26096381
PubMed | Europe PMC

Search this title in

Google Scholar