What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper

Valverde JP, Schielzeth H (2015)
BMC Evolutionary Biology 15: 168-168.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
Background: Colour polymorphisms are a fascinating facet of many natural populations of plants and animals, and the selective processes that maintain such variation are as relevant as the processes which promote their development. Orthoptera, the insect group that encompasses grasshoppers and bush crickets, includes a particularly large number of species that are colour polymorphic with a marked green-brown polymorphism being particularly widespread. Colour polymorphism has been associated with the need for crypsis and background matching and background-dependent homochromy has been described in a few species. However, when and how different environmental conditions influence variation in colour remains poorly understood. Here we test for effects of background colour and ambient temperature on the occurrence of colour morph switches (green to brown or brown to green) and developmental darkening in the alpine dwelling club-legged grasshopper Gomphocerus sibiricus. Results: We monitored individually housed nymphae across three of their four developmental stages and into the first week after final ecdysis. Our data show an absence of colour morph switches in G. sibiricus, without a single switch observed in our sample. Furthermore, we test for an effect of temperature on colouration by manipulating radiant heat, a limiting factor in alpine habitats. Radiant heat had a significant effect on developmental darkening: individuals under low radiant heat tended to darken, while individuals under high radiant heat tended to lighten within nymphal stages. Young imagoes darkened under either condition. Conclusions: Our results indicate a plastic response to a variable temperature and indicate that melanin, a multipurpose pigment responsible for dark colouration and presumed to be costly, seems to be strategically allocated according to the current environmental conditions. Unlike other orthopterans, the species is apparently unable to switch colour morphs (green/brown) during development, suggesting that colour morphs are determined genetically (or very early during development) and that other processes have to contribute to crypsis and homochromy in this species.
Erscheinungsjahr
Zeitschriftentitel
BMC Evolutionary Biology
Band
15
Seite
168-168
ISSN
PUB-ID

Zitieren

Valverde JP, Schielzeth H. What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology. 2015;15:168-168.
Valverde, J. P., & Schielzeth, H. (2015). What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology, 15, 168-168. doi:10.1186/s12862-015-0419-9
Valverde, J. P., and Schielzeth, H. (2015). What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology 15, 168-168.
Valverde, J.P., & Schielzeth, H., 2015. What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology, 15, p 168-168.
J.P. Valverde and H. Schielzeth, “What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper”, BMC Evolutionary Biology, vol. 15, 2015, pp. 168-168.
Valverde, J.P., Schielzeth, H.: What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper. BMC Evolutionary Biology. 15, 168-168 (2015).
Valverde, J. Pablo, and Schielzeth, Holger. “What triggers colour change? Effects of background colour and temperature on the development of an alpine grasshopper”. BMC Evolutionary Biology 15 (2015): 168-168.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spatial analyses of two color polymorphisms in an alpine grasshopper reveal a role of small-scale heterogeneity.
Dieker P, Beckmann L, Teckentrup J, Schielzeth H., Ecol Evol 8(15), 2018
PMID: 30151148
Increase of Albinistic Hosts Caused by Gut Parasites Promotes Self-Transmission.
Tan S, Wang Y, Liu P, Ge Y, Li A, Xing Y, Hunter DM, Shi W., Front Microbiol 9(), 2018
PMID: 30042753
High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome.
Shah AB, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman JI., Ecol Evol 6(16), 2016
PMID: 27547349

70 References

Daten bereitgestellt von Europe PubMed Central.

The evolution of dominance in certain polymorphic species
Fisher RA., 1930

Darwin C., 1871

Mayr E., 1942

Darwin C., 1859
Massive polymorphism and natural selection in Donacilla cornea (Poli, 1791) (Bivalvia: Mesodesmatidae)
Whiteley DAA, Owen DF, Smith DAS., 1997
Evolution and ecology of spider coloration.
Oxford GS, Gillespie RG., Annu. Rev. Entomol. 43(), 1998
PMID: 15012400
A review of colour and pattern polymorphisms in anurans
Hoffman EA, Blouin MS., 2000
The evolution of color polymorphism: crypticity, searching images, and apostatic selection
Bond AB., 2007
Linking color polymorphism maintenance and speciation.
Gray SM, McKinnon JS., Trends Ecol. Evol. (Amst.) 22(2), 2006
PMID: 17055107
Perceptual processes and the maintenance of polymorphism through frequency-dependent predation
Punzalan D, Rodd FH, Hughes KA., 2005
Colour polymorphism and correlated characters: genetic mechanisms and evolution.
McKinnon JS, Pierotti ME., Mol. Ecol. 19(23), 2010
PMID: 21040047

Majerus MEN., 1998
The variable coloration of the acridoid grasshoppers
Rowell CHF., 1971
Color pattern polymorphism
Dearn JM., 1990

Key KHL., 1954

Bellmann H, Luquet CH., 2009

Bellmann H., 2006
Reversible colour change in Arthropoda.
Umbers KD, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME., Biol Rev Camb Philos Soc 89(4), 2014
PMID: 24495279
Evolutionary significance of ontogenetic colour change in animals
Booth CL., 1990
Phylogenetic perspectives on the evolution of locust phase polyphenism
Song H., 2005
The physiology of locust phase polymorphism: an update.
Pener MP, Yerushalmi Y., J. Insect Physiol. 44(5-6), 1998
PMID: 12770154
Locusts.
Simpson SJ, Sword GA., Curr. Biol. 18(9), 2008
PMID: 18460311

Uvarov BP., 1966
Locust phase polymorphism and its endocrine relations
Pener MP., 1991
Density-dependent phase polyphenism in nonmodel locusts: A minireview
Song H., 2011
Environmental factors affecting the green/brown polymorphism in the Cyrtacanthacridine grasshopper Schistocerca vaga (Scudder)
Rowell CHF, Cannis TL., 1971
Chromatic polymorphism and geophagy: Two outstanding characteristics of Rhammatocerus schistocercoides (Rehn 1906) grasshoppers in Brazil (Orthoptera, Acrididae, Gomphocerinae)
Lecoq M, Pierozzi I., 1996

Richards OW, Waloff N., 1954
Phase variation in non-swarming grasshoppers
Rubtzov IA., 1935

Nabours R., 1929
Coevolution of color pattern and thermoregulatory behavior in polymorphic pygmy grasshoppers Tetrix undulata.
Forsman A, Ringblom K, Civantos E, Ahnesjo J., Evolution 56(2), 2002
PMID: 11926503
Weitere Untersuchungen über Farbanpassung bei Oedaleus decorus
Ergene S., 1955

Ingrisch S, Köhler G., 1998
Pigments and color changes
Fuzeau-Braesch S., 1972
Homochrome Farbanpassung bei Oedipoda Larven
Ergene S., 1952
Dynamics of colour polymorphism in a changing environment: fire melanism and then what?
Karlsson M, Caesar S, Ahnesjo J, Forsman A., Oecologia 154(4), 2007
PMID: 17957385
Some like it hot: Intra-population variation in behavioral thermoregulation in color-polymorphic pygmy grasshoppers
Forsman A., 2000
Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies
Kingsolver JG, Wiernasz DC., 1991
The bionomics of Schistocerca obscura (Fabr)
Duck LG., 1944

Sergeev MG, Kopaneva LM, Rubtsov IA, Antipanova EM, Burgov AG, Vysotskaya LV., 1995
The phylogeny of the Orthoptera (Insecta) as deduced from mitogenomic gene sequences
Zhang HL, Huang Y, Lin LL, Wang XY, Zheng ZM., 2013
Untersuchungen über Farbanpassung und Farbwechsel bei Acrida turrita
Ergene S., 1950
Mountain weather and climate: A general overview and a focus on climatic change in the Alps
Beniston M., 2006
Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies
Ellers J, Boggs CL., 2004
Insect thermoregulation
May ML., 1979
Costly melanin ornaments: the importance of taxon?
Stoehr AM., 2006
Responses of disparate phenotypically-plastic, melanin-based traits to common cues: limits to the benefits of adaptive plasticity?
Stoehr AM., 2010

AUTHOR UNKNOWN, 0
Comparative physiology: chromatophores.
Fingerman M., Annu. Rev. Physiol. 32(), 1970
PMID: 4313381
CHROMATOPHORES.
FINGERMAN M., Physiol. Rev. 45(), 1965
PMID: 14302912
Organelle evolution: what's in a name?
Keeling PJ, Archibald JM., Curr. Biol. 18(8), 2008
PMID: 18430636
Microtubules in the epidermal cells of Carausius morosus (Br) - Their pattern and relation to pigment migration
Berthold G., 1980
The adaptiveness of animal colors
Burtt EH., 1981
Conclusions beyond support: overconfident estimates in mixed models.
Schielzeth H, Forstmeier W., Behav. Ecol. 20(2), 2008
PMID: 19461866

Core R., 2014

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
On the responses of the african migratory locust to different types of background
Hertz M, Imms AD., 1937
Environmental effects on color variation and ommochromes in Chorthippus biguttulus L. (Orthoptera, Acrididae)
Helfert B., 1978

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26293296
PubMed | Europe PMC

Suchen in

Google Scholar