Escherichia coli as host for membrane protein structure determination: a global analysis

Hattab G, Warschawski DE, Moncoq K, Miroux B (2015)
Scientific Reports 5: 12097.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production.
Erscheinungsjahr
Zeitschriftentitel
Scientific Reports
Band
5
Seite
12097
ISSN
PUB-ID

Zitieren

Hattab G, Warschawski DE, Moncoq K, Miroux B. Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports. 2015;5:12097.
Hattab, G., Warschawski, D. E., Moncoq, K., & Miroux, B. (2015). Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports, 5, 12097. doi:10.1038/srep12097
Hattab, G., Warschawski, D. E., Moncoq, K., and Miroux, B. (2015). Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports 5, 12097.
Hattab, G., et al., 2015. Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports, 5, p 12097.
G. Hattab, et al., “Escherichia coli as host for membrane protein structure determination: a global analysis”, Scientific Reports, vol. 5, 2015, pp. 12097.
Hattab, G., Warschawski, D.E., Moncoq, K., Miroux, B.: Escherichia coli as host for membrane protein structure determination: a global analysis. Scientific Reports. 5, 12097 (2015).
Hattab, Georges, Warschawski, Dror E., Moncoq, Karine, and Miroux, Bruno. “Escherichia coli as host for membrane protein structure determination: a global analysis”. Scientific Reports 5 (2015): 12097.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3).
Baumgarten T, Schlegel S, Wagner S, Löw M, Eriksson J, Bonde I, Herrgård MJ, Heipieper HJ, Nørholm MH, Slotboom DJ, de Gier JW., Sci Rep 7(), 2017
PMID: 28338018
Double promoter expression systems for recombinant protein production by industrial microorganisms.
Öztürk S, Ergün BG, Çalık P., Appl Microbiol Biotechnol 101(20), 2017
PMID: 28900685
Current strategies for protein production and purification enabling membrane protein structural biology.
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK., Biochem Cell Biol 94(6), 2016
PMID: 27010607

51 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Crystallizing membrane proteins using lipidic mesophases.
Caffrey M, Cherezov V., Nat Protoc 4(5), 2009
PMID: 19390528
Anomalous diffraction in crystallographic phase evaluation.
Hendrickson WA., Q. Rev. Biophys. 47(1), 2014
PMID: 24726017
Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2.
Catoire LJ, Damian M, Giusti F, Martin A, van Heijenoort C, Popot JL, Guittet E, Baneres JL., J. Am. Chem. Soc. 132(26), 2010
PMID: 20552979
Structure of the TRPV1 ion channel determined by electron cryo-microscopy.
Liao M, Cao E, Julius D, Cheng Y., Nature 504(7478), 2013
PMID: 24305160
Overexpression of membrane proteins in mammalian cells for structural studies.
Andrell J, Tate CG., Mol. Membr. Biol. 30(1), 2012
PMID: 22963530
Overexpression of membrane proteins using Pichia pastoris
AUTHOR UNKNOWN, 2012
High-throughput expression and purification of membrane proteins.
Mancia F, Love J., J. Struct. Biol. 172(1), 2010
PMID: 20394823
High-throughput cloning and expression of integral membrane proteins in Escherichia coli
AUTHOR UNKNOWN, 2013
Use of T7 RNA polymerase to direct expression of cloned genes.
Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW., Meth. Enzymol. 185(), 1990
PMID: 2199796
T7 lysozyme inhibits transcription by T7 RNA polymerase.
Moffatt BA, Studier FW., Cell 49(2), 1987
PMID: 3568126
Tuning Escherichia coli for membrane protein overexpression
AUTHOR UNKNOWN, 2008
Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase.
Arechaga I, Miroux B, Karrasch S, Huijbregts R, de Kruijff B, Runswick MJ, Walker JE., FEBS Lett. 482(3), 2000
PMID: 11024463
Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.
Guzman LM, Belin D, Carson MJ, Beckwith J., J. Bacteriol. 177(14), 1995
PMID: 7608087
A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo.
Bujard H, Gentz R, Lanzer M, Stueber D, Mueller M, Ibrahimi I, Haeuptle MT, Dobberstein B., Meth. Enzymol. 155(), 1987
PMID: 2828874
Crystal structure of the monomeric porin OmpG.
Subbarao GV, van den Berg B., J. Mol. Biol. 360(4), 2006
PMID: 16797588
Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.
Yildiz O, Vinothkumar KR, Goswami P, Kuhlbrandt W., EMBO J. 25(15), 2006
PMID: 16888630
Structure of outer membrane protein G by solution NMR spectroscopy.
Liang B, Tamm LK., Proc. Natl. Acad. Sci. U.S.A. 104(41), 2007
PMID: 17911261
Structure and mechanism of the lactose permease of Escherichia coli.
Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S., Science 301(5633), 2003
PMID: 12893935
Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY.
Mirza O, Guan L, Verner G, Iwata S, Kaback HR., EMBO J. 25(6), 2006
PMID: 16525509
Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition.
Chaptal V, Kwon S, Sawaya MR, Guan L, Kaback HR, Abramson J., Proc. Natl. Acad. Sci. U.S.A. 108(23), 2011
PMID: 21593407
Structure of sugar-bound LacY.
Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM., Proc. Natl. Acad. Sci. U.S.A. 111(5), 2014
PMID: 24453216
Crystal structure of osmoporin OmpC from E. coli at 2.0 A.
Basle A, Rummel G, Storici P, Rosenbusch JP, Schirmer T., J. Mol. Biol. 362(5), 2006
PMID: 16949612
Crystal structures of various maltooligosaccharides bound to maltoporin reveal a specific sugar translocation pathway.
Dutzler R, Wang YF, Rizkallah P, Rosenbusch JP, Schirmer T., Structure 4(2), 1996
PMID: 8805519
Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.
Tornroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, Neutze R., Structure 15(12), 2007
PMID: 18073115
The architecture of respiratory complex I.
Efremov RG, Baradaran R, Sazanov LA., Nature 465(7297), 2010
PMID: 20505720
Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high-quality recombinant proteins.
Sevastsyanovich Y, Alfasi S, Overton T, Hall R, Jones J, Hewitt C, Cole J., FEMS Microbiol. Lett. 299(1), 2009
PMID: 19686347
The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites.
Walse B, Dufe VT, Svensson B, Fritzson I, Dahlberg L, Khairoullina A, Wellmar U, Al-Karadaghi S., Biochemistry 47(34), 2008
PMID: 18672895
Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis.
Fairman JW, Dautin N, Wojtowicz D, Liu W, Noinaj N, Barnard TJ, Udho E, Przytycka TM, Cherezov V, Buchanan SK., Structure 20(7), 2012
PMID: 22658748
The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex.
Orriss GL, Runswick MJ, Collinson IR, Miroux B, Fearnley IM, Skehel JM, Walker JE., Biochem. J. 314 ( Pt 2)(), 1996
PMID: 8670087
Identification of a region in segment 1 of gelsolin critical for actin binding.
Way M, Pope B, Gooch J, Hawkins M, Weeds AG., EMBO J. 9(12), 1990
PMID: 2174356
Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
Huang CY, Shih HW, Lin LY, Tien YW, Cheng TJ, Cheng WC, Wong CH, Ma C., Proc. Natl. Acad. Sci. U.S.A. 109(17), 2012
PMID: 22493270

AUTHOR UNKNOWN, 1999
Use of GFP fusions for the isolation of Escherichia coli strains for improved production of different target recombinant proteins.
Alfasi S, Sevastsyanovich Y, Zaffaroni L, Griffiths L, Hall R, Cole J., J. Biotechnol. 156(1), 2011
PMID: 21875628
Optimization of membrane protein overexpression and purification using GFP fusions.
Drew D, Lerch M, Kunji E, Slotboom DJ, de Gier JW., Nat. Methods 3(4), 2006
PMID: 16554836
Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli.
Skretas G, Makino T, Varadarajan N, Pogson M, Georgiou G., Metab. Eng. 14(5), 2012
PMID: 22609824
From the Cover: Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity
AUTHOR UNKNOWN, 2008
Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo.
Pechmann S, Chartron JW, Frydman J., Nat. Struct. Mol. Biol. 21(12), 2014
PMID: 25420103

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26160693
PubMed | Europe PMC

Suchen in

Google Scholar