Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant

Bremges A, Maus I, Belmann P, Eikmeyer FG, Winkler A, Albersmeier A, Pühler A, Schlüter A, Sczyrba A (2015)
GigaScience 4: 33.

Download
OA
Journal Article | Published | English
Abstract
Background The production of biogas takes place under anaerobic conditions and involves microbial decomposition of organic matter. Most of the participating microbes are still unknown and non-cultivable. Accordingly, shotgun metagenome sequencing currently is the method of choice to obtain insights into community composition and the genetic repertoire. Findings Here, we report on the deeply sequenced metagenome and metatranscriptome of a complex biogas-producing microbial community from an agricultural production-scale biogas plant. We assembled the metagenome and, as an example application, show that we reconstructed most genes involved in the methane metabolism, a key pathway involving methanogenesis performed by methanogenic Archaea. This result indicates that there is sufficient sequencing coverage for most downstream analyses. Conclusions Sequenced at least one order of magnitude deeper than previous studies, our metagenome data will enable new insights into community composition and the genetic potential of important community members. Moreover, mapping of transcripts to reconstructed genome sequences will enable the identification of active metabolic pathways in target organisms.
Publishing Year
eISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Bremges A, Maus I, Belmann P, et al. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience. 2015;4: 33.
Bremges, A., Maus, I., Belmann, P., Eikmeyer, F. G., Winkler, A., Albersmeier, A., Pühler, A., et al. (2015). Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience, 4: 33.
Bremges, A., Maus, I., Belmann, P., Eikmeyer, F. G., Winkler, A., Albersmeier, A., Pühler, A., Schlüter, A., and Sczyrba, A. (2015). Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience 4:33.
Bremges, A., et al., 2015. Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience, 4: 33.
A. Bremges, et al., “Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant”, GigaScience, vol. 4, 2015, : 33.
Bremges, A., Maus, I., Belmann, P., Eikmeyer, F.G., Winkler, A., Albersmeier, A., Pühler, A., Schlüter, A., Sczyrba, A.: Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant. GigaScience. 4, : 33 (2015).
Bremges, Andreas, Maus, Irena, Belmann, Peter, Eikmeyer, Felix Gregor, Winkler, Anika, Albersmeier, Andreas, Pühler, Alfred, Schlüter, Andreas, and Sczyrba, Alexander. “Deeply sequenced metagenome and metatranscriptome of a biogas-producing microbial community from an agricultural production-scale biogas plant”. GigaScience 4 (2015): 33.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-11-17T14:26:54Z

This data publication is cited in the following publications:
This publication cites the following data publications:

4 Citations in Europe PMC

Data provided by Europe PubMed Central.

Identification and genome reconstruction of abundant distinct taxa in microbiomes from one thermophilic and three mesophilic production-scale biogas plants.
Stolze Y, Bremges A, Rumming M, Henke C, Maus I, Puhler A, Sczyrba A, Schluter A., Biotechnol Biofuels 9(), 2016
PMID: 27462367
Proteotyping of biogas plant microbiomes separates biogas plants according to process temperature and reactor type.
Heyer R, Benndorf D, Kohrs F, De Vrieze J, Boon N, Hoffmann M, Rapp E, Schluter A, Sczyrba A, Reichl U., Biotechnol Biofuels 9(), 2016
PMID: 27462366
Tools and techniques for computational reproducibility.
Piccolo SR, Frampton MB., Gigascience 5(1), 2016
PMID: 27401684
Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.
Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I., Biotechnol Biofuels 9(), 2016
PMID: 26839589

19 References

Data provided by Europe PubMed Central.

Biogas production: current state and perspectives.
Weiland P., Appl. Microbiol. Biotechnol. 85(4), 2010
PMID: 19777226

AUTHOR UNKNOWN, 0
Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing.
Jaenicke S, Ander C, Bekel T, Bisdorf R, Droge M, Gartemann KH, Junemann S, Kaiser O, Krause L, Tille F, Zakrzewski M, Puhler A, Schluter A, Goesmann A., PLoS ONE 6(1), 2011
PMID: 21297863
Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing.
Wirth R, Kovacs E, Maroti G, Bagi Z, Rakhely G, Kovacs KL., Biotechnol Biofuels 5(), 2012
PMID: 22673110
Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing.
Zakrzewski M, Goesmann A, Jaenicke S, Junemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sorensen S, Puhler A, Schluter A., J. Biotechnol. 158(4), 2012
PMID: 22342600
Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions.
Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, Siebner C, Puhler A, Schluter A., Biotechnol Biofuels 8(), 2015
PMID: 25688290
The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology.
Schluter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann KH, Krahn I, Krause L, Kromeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Puhler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehover P, Goesmann A., J. Biotechnol. 136(1-2), 2008
PMID: 18597880
A simple and very efficient method for generating cDNA libraries.
Gubler U, Hoffman BJ., Gene 25(2-3), 1983
PMID: 6198242
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Ray Meta: scalable de novo metagenome assembly and profiling.
Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J., Genome Biol. 13(12), 2012
PMID: 23259615
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
Gene and translation initiation site prediction in metagenomic sequences.
Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC., Bioinformatics 28(17), 2012
PMID: 22796954
Data, information, knowledge and principle: back to metabolism in KEGG.
Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M., Nucleic Acids Res. 42(Database issue), 2014
PMID: 24214961
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
BEDTools: a flexible suite of utilities for comparing genomic features.
Quinlan AR, Hall IM., Bioinformatics 26(6), 2010
PMID: 20110278

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 26229594
PubMed | Europe PMC

Search this title in

Google Scholar