Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching

Trofymchuk K, Prodi L, Reisch A, Mely Y, Altenhöner K, Mattay J, Klymchenko AS (2015)
The Journal of Physical Chemistry Letters 6(12): 2259-2264.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ;
Abstract
Photoswitching of bright fluorescent nanoparticles opens new possibilities for bioimaging with superior temporal and spatial resolution. However, efficient photoswitching of nanoparticles is hard to achieve using Forster resonance energy transfer (FRET) to a photochromic dye, because the particle size is usually larger than the Forster radius. Here, we propose to exploit the exciton diffusion within the FRET donor dyes to boost photoswitching efficiency in dye-doped polymer nanoparticles. To this end, we utilized bulky hydrophobic counterions that prevent self-quenching and favor communication of octadecyl rhodamine B dyes inside a polymer matrix of poly(D,L-lactide-co-glycolide). Among tested counterions, only perfluorinated tetraphenylborate that favors the exciton diffusion enables high photoswitching efficiency (on/off ratio similar to 20). The switching improves with donor dye loading and requires only 0.1-0.3 wt % of a diphenylethene photochromic dye. Our nanoparticles were validated both in solution and at the single-particle level. The proposed concept paves the way to new efficient photoswitchable nanomaterials.
Publishing Year
ISSN
PUB-ID

Cite this

Trofymchuk K, Prodi L, Reisch A, et al. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. The Journal of Physical Chemistry Letters. 2015;6(12):2259-2264.
Trofymchuk, K., Prodi, L., Reisch, A., Mely, Y., Altenhöner, K., Mattay, J., & Klymchenko, A. S. (2015). Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. The Journal of Physical Chemistry Letters, 6(12), 2259-2264. doi:10.1021/acs.jpclett.5b00769
Trofymchuk, K., Prodi, L., Reisch, A., Mely, Y., Altenhöner, K., Mattay, J., and Klymchenko, A. S. (2015). Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. The Journal of Physical Chemistry Letters 6, 2259-2264.
Trofymchuk, K., et al., 2015. Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. The Journal of Physical Chemistry Letters, 6(12), p 2259-2264.
K. Trofymchuk, et al., “Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching”, The Journal of Physical Chemistry Letters, vol. 6, 2015, pp. 2259-2264.
Trofymchuk, K., Prodi, L., Reisch, A., Mely, Y., Altenhöner, K., Mattay, J., Klymchenko, A.S.: Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. The Journal of Physical Chemistry Letters. 6, 2259-2264 (2015).
Trofymchuk, Kateryna, Prodi, Luca, Reisch, Andreas, Mely, Yves, Altenhöner, Kai, Mattay, Jochen, and Klymchenko, Andrey S. “Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching”. The Journal of Physical Chemistry Letters 6.12 (2015): 2259-2264.
This data publication is cited in the following publications:
This publication cites the following data publications:

6 Citations in Europe PMC

Data provided by Europe PubMed Central.

Photochrome-doped organic films for photonic keypad locks and multi-state fluorescence.
Ritchie C, Vamvounis G, Soleimaninejad H, Smith TA, Bieske EJ, Dryza V., Phys Chem Chem Phys 19(30), 2017
PMID: 28722049
Giant light-harvesting nanoantenna for single-molecule detection in ambient light.
Trofymchuk K, Reisch A, Didier P, Fras F, Gilliot P, Mely Y, Klymchenko AS., Nat Photonics 11(10), 2017
PMID: 28983324
Giant Amplification of Photoswitching by a Few Photons in Fluorescent Photochromic Organic Nanoparticles.
Su J, Fukaminato T, Placial JP, Onodera T, Suzuki R, Oikawa H, Brosseau A, Brisset F, Pansu R, Nakatani K, Métivier R., Angew Chem Int Ed Engl 55(11), 2016
PMID: 26821998
Visible light photoswitching of conjugated polymer nanoparticle fluorescence.
Zhang X, Chamberlayne CF, Kurimoto A, Frank NL, Harbron EJ., Chem Commun (Camb) 52(22), 2016
PMID: 26838513
Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes.
Harrington WN, Haji MR, Galanzha EI, Nedosekin DA, Nima ZA, Watanabe F, Ghosh A, Biris AS, Zharov VP., Sci Rep 6(), 2016
PMID: 27824110

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 26266601
PubMed | Europe PMC

Search this title in

Google Scholar