Tunnel junction based memristors as artificial synapses

Thomas A, Niehörster S, Fabretti S, Shepheard N, Kuschel O, Küpper K, Wollschläger J, Krzysteczko P, Chicca E (2015)
Frontiers in Neuroscience 9: 241.

Download
OA
Journal Article | Published | English
Abstract
We prepared magnesia, tantalum oxide and barium titanate based junction structures and investigated their memristive properties. The low amplitudes of the resistance change in these types of junctions are the major obstacle for their use. Here, we increased the amplitude of the resistance change from 10% up to 100%. Utilizing the memristive properties, we looked into the use of the junction structures as artificial synapses. We observed analogs of longterm potentiation, long-term depression and spike-time dependent plasticity in these simple two terminal devices. Finally, we suggest a possible pathway of these devices towards their integration in neuromorphic systems for storing analog synaptic weights and supporting the implementation of biologically plausible learning mechanisms.
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Thomas A, Niehörster S, Fabretti S, et al. Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience. 2015;9: 241.
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., et al. (2015). Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience, 9, 241. doi:10.3389/fnins.2015.00241
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., Krzysteczko, P., and Chicca, E. (2015). Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience 9:241.
Thomas, A., et al., 2015. Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience, 9: 241.
A. Thomas, et al., “Tunnel junction based memristors as artificial synapses”, Frontiers in Neuroscience, vol. 9, 2015, : 241.
Thomas, A., Niehörster, S., Fabretti, S., Shepheard, N., Kuschel, O., Küpper, K., Wollschläger, J., Krzysteczko, P., Chicca, E.: Tunnel junction based memristors as artificial synapses. Frontiers in Neuroscience. 9, : 241 (2015).
Thomas, Andy, Niehörster, Stefan, Fabretti, Savio, Shepheard, Norman, Kuschel, Olga, Küpper, Karsten, Wollschläger, Joachim, Krzysteczko, Patryk, and Chicca, Elisabetta. “Tunnel junction based memristors as artificial synapses”. Frontiers in Neuroscience 9 (2015): 241.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-02-24T13:31:41Z

This data publication is cited in the following publications:
This publication cites the following data publications:

3 Citations in Europe PMC

Data provided by Europe PubMed Central.

Mimicking the brain functions of learning, forgetting and explicit/implicit memories with SrTiO3-based memristive devices.
Yin XB, Yang R, Xue KH, Tan ZH, Zhang XD, Miao XS, Guo X., Phys Chem Chem Phys 18(46), 2016
PMID: 27841389
Magnetic Tunnel Junction Mimics Stochastic Cortical Spiking Neurons.
Sengupta A, Panda P, Wijesinghe P, Kim Y, Roy K., Sci Rep 6(), 2016
PMID: 27443913

74 References

Data provided by Europe PubMed Central.

Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB., Nature 521(7550), 2015
PMID: 25951284
Floating gate synapses with spike-time-dependent plasticity.
Ramakrishnan S, Hasler PE, Gordon C., IEEE Trans Biomed Circuits Syst 5(3), 2011
PMID: 23851475
Tantalum oxide as an alternative low height tunnel barrier in magnetic junctions
Rottländer P., Hehn M., Lenoble O., Schuhl A.., 2001
Electric breakdown in ultrathin MgO tunnel barrier junctions for spin-transfer torque switching
Schaefers M., Drewello V., Reiss G., Thomas A., Thiel K., Eilers G.., 2009
Interfacial phase-change memory.
Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, Yagi T, Tominaga J., Nat Nanotechnol 6(8), 2011
PMID: 21725305
The missing memristor found.
Strukov DB, Snider GS, Stewart DR, Williams RS., Nature 453(7191), 2008
PMID: 18451858
Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films
Tagantsev A., Stolichnov I., Setter N., Cross J., Tsukada M.., 2002
Aluminum oxidation by a remote electron cyclotron resonance plasma in magnetic tunnel junctions
Thomas A., Brückl H., Sacher M., Schmalhorst J., Reiss G.., 2003
Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions
Thomas A., Drewello V., Schaefers M., Weddemann A., Reiss G., Eilers G.., 2008
Memristor-based neural networks
Thomas A.., 2013
Sub-nanosecond switching of a tantalum oxide memristor.
Torrezan AC, Strachan JP, Medeiros-Ribeiro G, Williams RS., Nanotechnology 22(48), 2011
PMID: 22071289
Applied physics. Tunneling across a ferroelectric.
Tsymbal EY, Kohlstedt H., Science 313(5784), 2006
PMID: 16840688
Electrochemical metallization memories--fundamentals, applications, prospects.
Valov I, Waser R, Jameson JR, Kozicki MN., Nanotechnology 22(25), 2011
PMID: 21572191
Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses.
Vogelstein RJ, Mallik U, Vogelstein JT, Cauwenberghs G., IEEE Trans Neural Netw 18(1), 2007
PMID: 17278476
Ferroelectricity, domain structure, and phase transitions of barium titanate
Von A.., 1950
Nanoionics-based resistive switching memories.
Waser R, Aono M., Nat Mater 6(11), 2007
PMID: 17972938
Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges
Waser R., Dittmann R., Staikov G., Szot K.., 2009

Waser R.., 2008
Memristor-CMOS hybrid integrated circuits for reconfigurable logic.
Xia Q, Robinett W, Cumbie MW, Banerjee N, Cardinali TJ, Yang JJ, Wu W, Li X, Tong WM, Strukov DB, Snider GS, Medeiros-Ribeiro G, Williams RS., Nano Lett. 9(10), 2009
PMID: 19722537
Programmable nanowire circuits for nanoprocessors.
Yan H, Choe HS, Nam S, Hu Y, Das S, Klemic JF, Ellenbogen JC, Lieber CM., Nature 470(7333), 2011
PMID: 21307937
High switching endurance in TaO[sub x] memristive devices
Yang J., Zhang M., Strachan J., Miao F., Pickett M., Kelley R.., 2010
Exploiting memristive BiFeO3 bilayer structures for compact sequential logics
You T., Shuai Y., Luo W., Du N., Buerger D., Skorupa I.., 2014
Random and localized resistive switching observation in Pt/NiO/Pt
Yun J.-B., Kim S., Seo S., Lee M.-J., Kim D.-C., Ahn S.-E.., 2007

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 26217173
PubMed | Europe PMC

Search this title in

Google Scholar