Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition

Teich L, Kappe D, Rempel T, Meyer J, Schroeder C, Hütten A (2015)
Sensors 15(4): 9251-9264.

Journal Article | Published | English

No fulltext has been uploaded

Author
Abstract
The formation of magnetic bead or nanoparticle superstructures due to magnetic dipole dipole interactions can be used as configurable matter in order to realize low-cost magnetoresistive sensors with very high GMR-effect amplitudes. Experimentally, this can be realized by immersing magnetic beads or nanoparticles in conductive liquid gels and rearranging them by applying suitable external magnetic fields. After gelatinization of the gel matrix the bead or nanoparticle positions are fixed and the resulting system can be used as a magnetoresistive sensor. In order to optimize such sensor structures we have developed a simulation tool chain that allows us not only to study the structuring process in the liquid state but also to rigorously calculate the magnetoresistive characteristic curves for arbitrary nanoparticle arrangements. As an application, we discuss the role of magnetoresistive sensors in finding answers to molecular recognition.
Publishing Year
ISSN
PUB-ID

Cite this

Teich L, Kappe D, Rempel T, Meyer J, Schroeder C, Hütten A. Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition. Sensors. 2015;15(4):9251-9264.
Teich, L., Kappe, D., Rempel, T., Meyer, J., Schroeder, C., & Hütten, A. (2015). Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition. Sensors, 15(4), 9251-9264.
Teich, L., Kappe, D., Rempel, T., Meyer, J., Schroeder, C., and Hütten, A. (2015). Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition. Sensors 15, 9251-9264.
Teich, L., et al., 2015. Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition. Sensors, 15(4), p 9251-9264.
L. Teich, et al., “Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition”, Sensors, vol. 15, 2015, pp. 9251-9264.
Teich, L., Kappe, D., Rempel, T., Meyer, J., Schroeder, C., Hütten, A.: Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition. Sensors. 15, 9251-9264 (2015).
Teich, Lisa, Kappe, Daniel, Rempel, Thomas, Meyer, Judith, Schroeder, Christian, and Hütten, Andreas. “Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition”. Sensors 15.4 (2015): 9251-9264.
This data publication is cited in the following publications:
This publication cites the following data publications:

2 Citations in Europe PMC

Data provided by Europe PubMed Central.

Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.
Ennen I, Kappe D, Rempel T, Glenske C, Hutten A., Sensors (Basel) 16(6), 2016
PMID: 27322277

20 References

Data provided by Europe PubMed Central.

Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange.
Binasch G, Grunberg P, Saurenbach F, Zinn W., Phys. Rev., B Condens. Matter 39(7), 1989
PMID: 9948867
Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.
Baibich MN, Broto JM, Fert A, Nguyen Van Dau F , Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J., Phys. Rev. Lett. 61(21), 1988
PMID: 10039127
Giant magnetoresistance in nonmultilayer magnetic systems.
Xiao JQ, Jiang JS, Chien CL., Phys. Rev. Lett. 68(25), 1992
PMID: 10045787
Giant magnetoresistance in heterogeneous Cu-Co alloys.
Berkowitz AE, Mitchell JR, Carey MJ, Young AP, Zhang S, Spada FE, Parker FT, Hutten A, Thomas G., Phys. Rev. Lett. 68(25), 1992
PMID: 10045786
Giant magnetoresistance effects in gel-like matrices
Meyer J., Rempel T., Schäfers M., Wittbracht F., Müller C., Patel A.V., Hütten A.., 2013
Efficient Calculation of Low Energy Configurations of Nanoparticle Ensembles for Magnetoresistive Sensor Devices by Means of Stochastic Spin Dynamics and Monte Carlo Methods
Teich L., Meyer J., Müller C., Patel A., Hütten A., Schröder C.., 2015
Simulating Computationally Complex Magnetic Molecules
Engelhardt L., Schröder C.., 2011
General purpose molecular dynamics simulations fully implemented on graphics processing units
Anderson J.A., Lorenz C.D., Travesset A.., 2008
Role of repulsive forces in determining the equilibrium structure of simple liquids
Weeks J.D., Chandler D., Andersen H.C.., 1971
Zur Quantentheorie der Molekeln
Born M., Oppenheimer R.., 1927
Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors.
Weddemann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstadt K, Mill N, Peter MK, Mattay J, Plattner C, Sewald N, Hutten A., Beilstein J Nanotechnol 1(), 2010
PMID: 21977397
Phenomenological theory of the giant magnetoresistance of superparamagnetic particles
Wiser N.., 1996
Origin of Giant Magnetoresistance: Bulk or Interface Scattering
Zahn P., Binder J., Mertig I., Zeller R., Dederichs P.H.., 1998
Spin glasses: Experimental facts, theoretical concepts, and open questions
Binder K., Young A.P.., 1986
Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory.
Budrikis Z, Morgan JP, Akerman J, Stein A, Politi P, Langridge S, Marrows CH, Stamps RL., Phys. Rev. Lett. 109(3), 2012
PMID: 22861890
COMSOL Multiphysics Modeling Software
AUTHOR UNKNOWN, 0
Minor groove recognition is important for the transcription factor PhoB: a surface plasmon resonance study.
Ritzefeld M, Wollschlager K, Niemann G, Anselmetti D, Sewald N., Mol Biosyst 7(11), 2011
PMID: 21912786
DNA-Bindung und Modifizierung der DNA-Bindenden Dom?ne des bakteriellen Transkriptionsfaktors PhoB aus E. coli
Niemann G.., 2014
Positioning system for particles in microfluidic structures
Weddemann A., Wittbracht F., Auge A., Hütten A.., 2009

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25903554
PubMed | Europe PMC

Search this title in

Google Scholar