Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level

Lüders J, Kurtz R (2015)
Frontiers in Integrative Neuroscience 9: 36.

Download
OA
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
;
Abstract / Bemerkung
Several recent studies in invertebrates as well as vertebrates have demonstrated that neuronal response characteristics of sensory neurons can be profoundly affected by an animal’s locomotor activity. The functional consequences of such state-dependent modulation have been a matter of intense debate. In flies, a particularly interesting finding was that tethered walking or flying causes not only general response enhancement of visual motion-sensitive neurons, but also broadens their temporal frequency tuning towards higher values. However, in other studies such state-dependent alterations of neuronal tuning functions were not found. We hypothesize that these discrepancies were due to different adaptation levels of the motion-sensitive neurons, resulting from the use of different stimulation protocols. This is plausible, because the strength of adaptation during ongoing stimulation was shown to be affected by chlordimeform (CDM), an agonist of the insect neuromodulator octopamine, which mediates state-dependent modulation. Our results show that CDM causes broadening of the temporal frequency tuning of the blowfly’s visual motion-sensitive H1 neuron only in the adapted state, but not prior to the presentation of adapting motion. Thus, our study indicates that seemingly conflicting results on the locomotor state-dependence of neuronal tuning functions are consistent when considering the neurons’ adaptation level. Moreover, it demonstrates that stimulation history has to be considered when the significance of state-dependent modulation of sensory processing is interpreted.
Erscheinungsjahr
Zeitschriftentitel
Frontiers in Integrative Neuroscience
Band
9
Art.-Nr.
36
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Lüders J, Kurtz R. Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Frontiers in Integrative Neuroscience. 2015;9: 36.
Lüders, J., & Kurtz, R. (2015). Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Frontiers in Integrative Neuroscience, 9, 36. doi:10.3389/fnint.2015.00036
Lüders, J., and Kurtz, R. (2015). Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Frontiers in Integrative Neuroscience 9:36.
Lüders, J., & Kurtz, R., 2015. Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Frontiers in Integrative Neuroscience, 9: 36.
J. Lüders and R. Kurtz, “Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level”, Frontiers in Integrative Neuroscience, vol. 9, 2015, : 36.
Lüders, J., Kurtz, R.: Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Frontiers in Integrative Neuroscience. 9, : 36 (2015).
Lüders, Janina, and Kurtz, Rafael. “Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level”. Frontiers in Integrative Neuroscience 9 (2015): 36.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-05-05T13:34:47Z

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Eyes Matched to the Prize: The State of Matched Filters in Insect Visual Circuits.
Kohn JR, Heath SL, Behnia R., Front Neural Circuits 12(), 2018
PMID: 29670512
Octopamine cyclic release and its modulation of visual sensitivity in crayfish.
Rodríguez-Sosa L, Calderón-Rosete G, Ortega-Cambranis A, De-Miguel FF., Comp Biochem Physiol A Mol Integr Physiol 203(), 2017
PMID: 27593450
Comparative system identification of flower tracking performance in three hawkmoth species reveals adaptations for dim light vision.
Stöckl AL, Kihlström K, Chandler S, Sponberg S., Philos Trans R Soc Lond B Biol Sci 372(1717), 2017
PMID: 28193822

29 References

Daten bereitgestellt von Europe PubMed Central.

Functional specialization of mouse higher visual cortical areas.
Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC., Neuron 72(6), 2011
PMID: 22196337
Locomotion controls spatial integration in mouse visual cortex.
Ayaz A, Saleem AB, Scholvinck ML, Carandini M., Curr. Biol. 23(10), 2013
PMID: 23664971
Controlling the false discovery rate: a practical and powerful approach to multiple testing
Benjamini Y., Hochberg Y.., 1995
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Octopaminergic modulation of contrast sensitivity.
de Haan R, Lee YJ, Nordstrom K., Front Integr Neurosci 6(), 2012
PMID: 22876224
Functional properties of the H1-neurone in the third optic ganglion of the blowfly, Phaenicia
Eckert H.., 1980
Action of formamidine pesticides on octopamine receptors.
Evans PD, Gee JD., Nature 287(5777), 1980
PMID: 6251379
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Influence of adapting speed on speed and contrast coding in the primary visual cortex of the cat.
Hietanen MA, Crowder NA, Price NS, Ibbotson MR., J. Physiol. (Lond.) 584(Pt 2), 2007
PMID: 17702823
Formamidine pesticides: octopamine-like actions in a firefly.
Hollingworth RM, Murdock LL., Science 208(4439), 1980
PMID: 17731571
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Sensorimotor mismatch signals in primary visual cortex of the behaving mouse.
Keller GB, Bonhoeffer T, Hubener M., Neuron 74(5), 2012
PMID: 22681686
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Sensory neurophysiology: motion vision during motor action.
Longden KD, Krapp HG., Curr. Biol. 21(17), 2011
PMID: 21920293
Nutritional state modulates the neural processing of visual motion.
Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG., Curr. Biol. 24(8), 2014
PMID: 24684935
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
Rapid contrast gain reduction following motion adaptation.
Nordstrom K, Moyer de Miguel I, O'Carroll DC., J. Exp. Biol. 214(Pt 23), 2011
PMID: 22071192
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., Vision Res. 43(11), 2003
PMID: 12726835
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
The analysis of ranked data derived from completely randomized factorial designs.
Scheirer CJ, Ray WS, Hare N., Biometrics 32(2), 1976
PMID: 953139
Cellular mechanisms for integral feedback in visually guided behavior.
Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH., Proc. Natl. Acad. Sci. U.S.A. 111(15), 2014
PMID: 24706794
Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila.
Suver MP, Mamiya A, Dickinson MH., Curr. Biol. 22(24), 2012
PMID: 23142045

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26074790
PubMed | Europe PMC

Suchen in

Google Scholar