Function of glutathione peroxidases in legume root nodules

Matamoros MA, Saiz A, Peñuelas M, Bustos-Sanmamed P, Mulet JM, Barja MV, Rouhier N, Moore M, James EK, Dietz K-J, Becana M (2015)
Journal of Experimental Botany 66(10): 2979-2990.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ; ; ; ; ; ;
Abstract / Bemerkung
Glutathione peroxidases (Gpxs) are antioxidant enzymes not studied so far in legume nodules, despite the fact that reactive oxygen species are produced at different steps of the symbiosis. The function of two Gpxs that are highly expressed in nodules of the model legume Lotus japonicus was examined. Gene expression analysis, enzymatic and nitrosylation assays, yeast cell complementation, in situ mRNA hybridization, immunoelectron microscopy, and LjGpx-green fluorescent protein (GFP) fusions were used to characterize the enzymes and to localize each transcript and isoform in nodules. The LjGpx1 and LjGpx3 genes encode thioredoxin-dependent phospholipid hydroperoxidases and are differentially regulated in response to nitric oxide (NO) and hormones. LjGpx1 and LjGpx3 are nitrosylated in vitro or in plants treated with S-nitrosoglutathione (GSNO). Consistent with the modification of the peroxidatic cysteine of LjGpx3, in vitro assays demonstrated that this modification results in enzyme inhibition. The enzymes are highly expressed in the infected zone, but the LjGpx3 mRNA is also detected in the cortex and vascular bundles. LjGpx1 is localized to the plastids and nuclei, and LjGpx3 to the cytosol and endoplasmic reticulum. Based on yeast complementation experiments, both enzymes protect against oxidative stress, salt stress, and membrane damage. It is concluded that both LjGpxs perform major antioxidative functions in nodules, preventing lipid peroxidation and other oxidative processes at different subcellular sites of vascular and infected cells. The enzymes are probably involved in hormone and NO signalling, and may be regulated through nitrosylation of the peroxidatic cysteine essential for catalytic function.
Journal of Experimental Botany


Matamoros MA, Saiz A, Peñuelas M, et al. Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany. 2015;66(10):2979-2990.
Matamoros, M. A., Saiz, A., Peñuelas, M., Bustos-Sanmamed, P., Mulet, J. M., Barja, M. V., Rouhier, N., et al. (2015). Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany, 66(10), 2979-2990. doi:10.1093/jxb/erv066
Matamoros, M. A., Saiz, A., Peñuelas, M., Bustos-Sanmamed, P., Mulet, J. M., Barja, M. V., Rouhier, N., Moore, M., James, E. K., Dietz, K. - J., et al. (2015). Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany 66, 2979-2990.
Matamoros, M.A., et al., 2015. Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany, 66(10), p 2979-2990.
M.A. Matamoros, et al., “Function of glutathione peroxidases in legume root nodules”, Journal of Experimental Botany, vol. 66, 2015, pp. 2979-2990.
Matamoros, M.A., Saiz, A., Peñuelas, M., Bustos-Sanmamed, P., Mulet, J.M., Barja, M.V., Rouhier, N., Moore, M., James, E.K., Dietz, K.-J., Becana, M.: Function of glutathione peroxidases in legume root nodules. Journal of Experimental Botany. 66, 2979-2990 (2015).
Matamoros, Manuel A., Saiz, Ana, Peñuelas, Maria, Bustos-Sanmamed, Pilar, Mulet, Jose M., Barja, Maria V., Rouhier, Nicolas, Moore, Marten, James, Euan K., Dietz, Karl-Josef, and Becana, Manuel. “Function of glutathione peroxidases in legume root nodules”. Journal of Experimental Botany 66.10 (2015): 2979-2990.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana.
Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ., Plant Cell Environ 40(8), 2017
PMID: 28102911
Post-translational modifications of Medicago truncatula glutathione peroxidase 1 induced by nitric oxide.
Castella C, Mirtziou I, Seassau A, Boscari A, Montrichard F, Papadopoulou K, Rouhier N, Puppo A, Brouquisse R., Nitric Oxide 68(), 2017
PMID: 28193486
Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation.
Cheng G, Karunakaran R, East AK, Munoz-Azcarate O, Poole PS., FEMS Microbiol Lett 364(8), 2017
PMID: 28333211
Identification of Salt Tolerance-related microRNAs and Their Targets in Maize (Zea mays L.) Using High-throughput Sequencing and Degradome Analysis.
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B., Front Plant Sci 8(), 2017
PMID: 28603532
Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction.
Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A., Front Plant Sci 7(), 2016
PMID: 27092165

49 References

Daten bereitgestellt von Europe PubMed Central.

Phospholipid hydroperoxide glutathione peroxidase.
Maiorino M, Gregolin C, Ursini F., Meth. Enzymol. 186(), 1990
PMID: 2233312
Glutathione peroxidase family - an evolutionary overview.
Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M., FEBS J. 275(15), 2008
PMID: 18616466
Identification of cDNAS encoding plastid-targeted glutathione peroxidase.
Mullineaux PM, Karpinski S, Jimenez A, Cleary SP, Robinson C, Creissen GP., Plant J. 13(3), 1998
PMID: 9680987
Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation.
Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T., J. Biosci. Bioeng. 104(1), 2007
PMID: 17697981
Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses.
Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N., Plant Physiol. 142(4), 2006
PMID: 17071643
The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana.
Passaia G, Queval G, Bai J, Margis-Pinheiro M, Foyer CH., J. Exp. Bot. 65(5), 2014
PMID: 24470466
Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity.
Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M., Plant Cell 16(10), 2004
PMID: 15367716
Lipid peroxidation in peribacteroid membranes from French-bean nodules.
Puppo A, Herrada G, Rigaud J., Plant Physiol. 96(3), 1991
PMID: 16668260
Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process.
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH., New Phytol. 165(3), 2005
PMID: 15720680
Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses.
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R., Antioxid. Redox Signal. 18(16), 2013
PMID: 23249379
The glutathione peroxidase gene family of Lotus japonicus: characterization of genomic clones, expression analyses and immunolocalization in legumes.
Ramos J, Matamoros MA, Naya L, James EK, Rouhier N, Sato S, Tabata S, Becana M., New Phytol. 181(1), 2009
PMID: 18826485
Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways.
Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP., Plant J. 36(5), 2003
PMID: 14617062
Cadmium-induced subcellular accumulation of O− and HO in pea leaves
Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del LA, Sandalio LM., 2004
Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata.
Rubio MC, Becana M, Kanematsu S, Ushimaru T, James EK., New Phytol. 183(2), 2009
PMID: 19594703
Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress.
Sainz M, Perez-Rontome C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M., Plant J. 76(5), 2013
PMID: 24118423
Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism
Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M., 2015
Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells.
Seidel T, Kluge C, Hanitzsch M, Ross J, Sauer M, Dietz KJ, Golldack D., J. Biotechnol. 112(1-2), 2004
PMID: 15288951
A glimpse of the mechanisms of ion homeostasis during salt stress
Serrano R, Mulet JM, Rios G., 1999
Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus.
Tovar-Mendez A, Matamoros MA, Bustos-Sanmamed P, Dietz KJ, Cejudo FJ, Rouhier N, Sato S, Tabata S, Becana M., Plant Physiol. 156(3), 2011
PMID: 21562331
Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides
Wolff SP., 1994



Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 25740929
PubMed | Europe PMC

Suchen in

Google Scholar