LOFAR sparse image reconstruction

Garsden H, Girard JN, Starck JL, Corbel S, Tasse C, Woiselle A, McKean JP, van Amesfoort AS, Anderson J, Avruch IM, Beck R, et al. (2015)
Astronomy and Astrophysics 575: A90.

Download
No fulltext has been uploaded. References only!
Journal Article | Original Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract / Notes
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods. We implemented a Sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN based methods (CLEAN and MS CLEAN) with simulated and real LOFAR data. Results. We show that 0 sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; performs much better on extended objects (the root mean square error is reduced by a factor of up to 10): and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets), This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SKA.
Publishing Year
ISSN
PUB-ID

Cite this

Garsden H, Girard JN, Starck JL, et al. LOFAR sparse image reconstruction. Astronomy and Astrophysics. 2015;575: A90.
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., et al. (2015). LOFAR sparse image reconstruction. Astronomy and Astrophysics, 575, A90. doi:10.1051/0004-6361/201424504
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., van Amesfoort, A. S., Anderson, J., Avruch, I. M., et al. (2015). LOFAR sparse image reconstruction. Astronomy and Astrophysics 575:A90.
Garsden, H., et al., 2015. LOFAR sparse image reconstruction. Astronomy and Astrophysics, 575: A90.
H. Garsden, et al., “LOFAR sparse image reconstruction”, Astronomy and Astrophysics, vol. 575, 2015, : A90.
Garsden, H., Girard, J.N., Starck, J.L., Corbel, S., Tasse, C., Woiselle, A., McKean, J.P., van Amesfoort, A.S., Anderson, J., Avruch, I.M., Beck, R., Bentum, M.J., Best, P., Breitling, F., Broderick, J., Brueggen, M., Butcher, H.R., Ciardi, B., de Gasperin, F., de Geus, E., de Vos, M., Duscha, S., Eisloeffel, J., Engels, D., Falcke, H., Fallows, R.A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M.A., Griessmeier, J., Gunst, A.W., Hassall, T.E., Heald, G., Hoeft, M., Hoerandel, J., van der Horst, A., Juette, E., Karastergiou, A., Kondratiev, V.I., Kramer, M., Kuniyoshi, M., Kuper, G., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., Mulcahy, D.D., Munk, H., Norden, M.J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V.N., Pietka, G., Pizzo, R., Polatidis, A.G., Renting, A., Roettgering, H., Rowlinson, A., Schwarz, D., Sluman, J., Smirnov, O., Stappers, B.W., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., van Weeren, R.J., Wijnholds, S.J., Wise, M.W., Wucknitz, O., Yatawatta, S., Zarka, P., Zensus, A.: LOFAR sparse image reconstruction. Astronomy and Astrophysics. 575, : A90 (2015).
Garsden, H., Girard, J. N., Starck, J. L., Corbel, S., Tasse, C., Woiselle, A., McKean, J. P., van Amesfoort, A. S., Anderson, J., Avruch, I. M., Beck, R., Bentum, M. J., Best, P., Breitling, F., Broderick, J., Brueggen, M., Butcher, H. R., Ciardi, B., de Gasperin, F., de Geus, E., de Vos, M., Duscha, S., Eisloeffel, J., Engels, D., Falcke, H., Fallows, R. A., Fender, R., Ferrari, C., Frieswijk, W., Garrett, M. A., Griessmeier, J., Gunst, A. W., Hassall, T. E., Heald, G., Hoeft, M., Hoerandel, J., van der Horst, A., Juette, E., Karastergiou, A., Kondratiev, V. I., Kramer, M., Kuniyoshi, M., Kuper, G., Mann, G., Markoff, S., McFadden, R., McKay-Bukowski, D., Mulcahy, D. D., Munk, H., Norden, M. J., Orru, E., Paas, H., Pandey-Pommier, M., Pandey, V. N., Pietka, G., Pizzo, R., Polatidis, A. G., Renting, A., Roettgering, H., Rowlinson, A., Schwarz, Dominik, Sluman, J., Smirnov, O., Stappers, B. W., Steinmetz, M., Stewart, A., Swinbank, J., Tagger, M., Tang, Y., Tasse, C., Thoudam, S., Toribio, C., Vermeulen, R., Vocks, C., van Weeren, R. J., Wijnholds, S. J., Wise, M. W., Wucknitz, O., Yatawatta, S., Zarka, P., and Zensus, A. “LOFAR sparse image reconstruction”. Astronomy and Astrophysics 575 (2015): A90.
This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Search this title in

Google Scholar