Principal surfaces from unsupervised kernel regression
Meinicke P, Klanke S, Memisevic R, Ritter H (2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(9): 1379-1391.
Download
No fulltext has been uploaded. References only!
Journal Article
| Original Article
| Published
| English
No fulltext has been uploaded
Author
Department
Abstract
We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new method offers several advantages: First, it provides a practical solution to the model selection problem because all parameters can be estimated by leave-one-out cross-validation without additional computational cost. In addition, our approach allows for a convenient incorporation of nonlinear spectral methods for parameter initialization, beyond classical initializations based on linear PCA. Furthermore, it shows a simple way to fit principal surfaces in general feature spaces, beyond the usual data space setup. The experimental results illustrate these convenient features on simulated and real data.
Publishing Year
ISSN
PUB-ID
Cite this
Meinicke P, Klanke S, Memisevic R, Ritter H. Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005;27(9):1379-1391.
Meinicke, P., Klanke, S., Memisevic, R., & Ritter, H. (2005). Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1379-1391. doi:10.1109/TPAMI.2005.183
Meinicke, P., Klanke, S., Memisevic, R., and Ritter, H. (2005). Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1379-1391.
Meinicke, P., et al., 2005. Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), p 1379-1391.
P. Meinicke, et al., “Principal surfaces from unsupervised kernel regression”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, 2005, pp. 1379-1391.
Meinicke, P., Klanke, S., Memisevic, R., Ritter, H.: Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence. 27, 1379-1391 (2005).
Meinicke, Peter, Klanke, Stefan, Memisevic, R., and Ritter, Helge. “Principal surfaces from unsupervised kernel regression”. IEEE Transactions on Pattern Analysis and Machine Intelligence 27.9 (2005): 1379-1391.
This data publication is cited in the following publications:
This publication cites the following data publications:
6 Citations in Europe PMC
Data provided by Europe PubMed Central.
Exploring neighborhoods in the metagenome universe.
Aßhauer KP, Klingenberg H, Lingner T, Meinicke P., Int J Mol Sci 15(7), 2014
PMID: 25026170
Aßhauer KP, Klingenberg H, Lingner T, Meinicke P., Int J Mol Sci 15(7), 2014
PMID: 25026170
Shared Kernel Information Embedding for discriminative inference.
Memisevic R, Sigal L, Fleet DJ., IEEE Trans Pattern Anal Mach Intell 34(4), 2012
PMID: 21808087
Memisevic R, Sigal L, Fleet DJ., IEEE Trans Pattern Anal Mach Intell 34(4), 2012
PMID: 21808087
Hybrid dimensionality reduction method based on support vector machine and independent component analysis.
Moon S, Qi H., IEEE Trans Neural Netw Learn Syst 23(5), 2012
PMID: 24806124
Moon S, Qi H., IEEE Trans Neural Netw Learn Syst 23(5), 2012
PMID: 24806124
Constrained manifold learning for the characterization of pathological deviations from normality.
Duchateau N, De Craene M, Piella G, Frangi AF., Med Image Anal 16(8), 2012
PMID: 22906821
Duchateau N, De Craene M, Piella G, Frangi AF., Med Image Anal 16(8), 2012
PMID: 22906821
Principal curves as skeletons of tubular objects: locally characterizing the structures of axons.
Bas E, Erdogmus D., Neuroinformatics 9(2-3), 2011
PMID: 21336847
Bas E, Erdogmus D., Neuroinformatics 9(2-3), 2011
PMID: 21336847
Similarity preserving principal curve: an optimal 1-d feature extractor for data representation.
Sun M, Yang J, Liu C, Yang J., IEEE Trans Neural Netw 21(9), 2010
PMID: 20570770
Sun M, Yang J, Liu C, Yang J., IEEE Trans Neural Netw 21(9), 2010
PMID: 20570770
Export
0 Marked PublicationsWeb of Science
View record in Web of Science®Sources
PMID: 16173183
PubMed | Europe PMC