Targeted diversity generation by intraterrestrial archaea and archaeal viruses

Paul BG, Bagby SC, Czornyj E, Arambula D, Handa S, Sczyrba A, Ghosh P, Miller JF, Valentine DL (2015)
Nature Communications 6: 6585.

Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
; ; ; ; ; ; ; ;
Abstract / Bemerkung
In the evolutionary arms race between microbes, their parasites, and their neighbours, the capacity for rapid protein diversification is a potent weapon. Diversity-generating retroelements (DGRs) use mutagenic reverse transcription and retrohoming to generate myriad variants of a target gene. Originally discovered in pathogens, these retroelements have been identified in bacteria and their viruses, but never in archaea. Here we report the discovery of intact DGRs in two distinct intraterrestrial archaeal systems: a novel virus that appears to infect archaea in the marine subsurface, and, separately, two uncultivated nanoarchaea from the terrestrial subsurface. The viral DGR system targets putative tail fibre ligand-binding domains, potentially generating >10(18) protein variants. The two single-cell nanoarchaeal genomes each possess ≥4 distinct DGRs. Against an expected background of low genome-wide mutation rates, these results demonstrate a previously unsuspected potential for rapid, targeted sequence diversification in intraterrestrial archaea and their viruses.
Nature Communications


Paul BG, Bagby SC, Czornyj E, et al. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications. 2015;6:6585.
Paul, B. G., Bagby, S. C., Czornyj, E., Arambula, D., Handa, S., Sczyrba, A., Ghosh, P., et al. (2015). Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications, 6, 6585. doi:10.1038/ncomms7585
Paul, B. G., Bagby, S. C., Czornyj, E., Arambula, D., Handa, S., Sczyrba, A., Ghosh, P., Miller, J. F., and Valentine, D. L. (2015). Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications 6, 6585.
Paul, B.G., et al., 2015. Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications, 6, p 6585.
B.G. Paul, et al., “Targeted diversity generation by intraterrestrial archaea and archaeal viruses”, Nature Communications, vol. 6, 2015, pp. 6585.
Paul, B.G., Bagby, S.C., Czornyj, E., Arambula, D., Handa, S., Sczyrba, A., Ghosh, P., Miller, J.F., Valentine, D.L.: Targeted diversity generation by intraterrestrial archaea and archaeal viruses. Nature Communications. 6, 6585 (2015).
Paul, Blair G., Bagby, Sarah C., Czornyj, Elizabeth, Arambula, Diego, Handa, Sumit, Sczyrba, Alexander, Ghosh, Partho, Miller, Jeff F., and Valentine, David L. “Targeted diversity generation by intraterrestrial archaea and archaeal viruses”. Nature Communications 6 (2015): 6585.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Diversity-generating retroelements: natural variation, classification and evolution inferred from a large-scale genomic survey.
Wu L, Gingery M, Abebe M, Arambula D, Czornyj E, Handa S, Khan H, Liu M, Pohlschroder M, Shaw KL, Du A, Guo H, Ghosh P, Miller JF, Zimmerly S., Nucleic Acids Res 46(1), 2018
PMID: 29186518
Retroelement-guided protein diversification abounds in vast lineages of Bacteria and Archaea.
Paul BG, Burstein D, Castelle CJ, Handa S, Arambula D, Czornyj E, Thomas BC, Ghosh P, Miller JF, Banfield JF, Valentine DL., Nat Microbiol 2(), 2017
PMID: 28368387
Putative archaeal viruses from the mesopelagic ocean.
Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, Stewart FJ, Sullivan MB., PeerJ 5(), 2017
PMID: 28630803
Marine archaea and archaeal viruses under global change.
Danovaro R, Rastelli E, Corinaldesi C, Tangherlini M, Dell'Anno A., F1000Res 6(), 2017
PMID: 29034077
Mechanisms and consequences of diversity-generating immune strategies.
Westra ER, Sünderhauf D, Landsberger M, Buckling A., Nat Rev Immunol 17(11), 2017
PMID: 28787398
The enigmatic archaeal virosphere.
Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M., Nat Rev Microbiol 15(12), 2017
PMID: 29123227
Mechanisms of viral mutation.
Sanjuán R, Domingo-Calap P., Cell Mol Life Sci 73(23), 2016
PMID: 27392606
Evolutionary Ecology of Prokaryotic Immune Mechanisms.
van Houte S, Buckling A, Westra ER., Microbiol Mol Biol Rev 80(3), 2016
PMID: 27412881

47 References

Daten bereitgestellt von Europe PubMed Central.

Prediction of protein secondary structure from circular dichroism using theoretically derived spectra.
Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C., Proteins 80(2), 2012
PMID: 22095872
Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California

Laboratory procedures to generate viral metagenomes.
Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F., Nat Protoc 4(4), 2009
PMID: 19300441
Analysis of high-throughput sequencing and annotation strategies for phage genomes.
Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, Yandava C, Kodira C, Zeng Q, Weiand M, Sparrow T, Saif S, Giannoukos G, Young SK, Nusbaum C, Birren BW, Chisholm SW., PLoS ONE 5(2), 2010
PMID: 20140207
TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets.
Schmieder R, Lim YW, Rohwer F, Edwards R., BMC Bioinformatics 11(), 2010
PMID: 20573248
Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics.
Hurwitz BL, Deng L, Poulos BT, Sullivan MB., Environ. Microbiol. 15(5), 2013
PMID: 22845467
Artificial and natural duplicates in pyrosequencing reads of metagenomic data.
Niu B, Fu L, Sun S, Li W., BMC Bioinformatics 11(), 2010
PMID: 20388221
Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource.
Sun S, Chen J, Li W, Altintas I, Lin A, Peltier S, Stocks K, Allen EE, Ellisman M, Grethe J, Wooley J., Nucleic Acids Res. 39(Database issue), 2011
PMID: 21045053
Identifying bacterial genes and endosymbiont DNA with Glimmer.
Delcher AL, Bratke KA, Powers EC, Salzberg SL., Bioinformatics 23(6), 2007
PMID: 17237039
Basic local alignment search tool. J
ACLAME: a CLAssification of Mobile genetic Elements.
Leplae R, Hebrant A, Wodak SJ, Toussaint A., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681355
Protein structure prediction on the Web: a case study using the Phyre server.
Kelley LA, Sternberg MJ., Nat Protoc 4(3), 2009
PMID: 19247286
EMBOSS: the European Molecular Biology Open Software Suite.
Rice P, Longden I, Bleasby A., Trends Genet. 16(6), 2000
PMID: 10827456
Clustal W and Clustal X version 2.0.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG., Bioinformatics 23(21), 2007
PMID: 17846036
MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences.
Kumar S, Nei M, Dudley J, Tamura K., Brief. Bioinformatics 9(4), 2008
PMID: 18417537
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O., Syst. Biol. 59(3), 2010
PMID: 20525638
Evolutionary implications of microbial genome tetranucleotide frequency biases.
Pride DT, Meinersmann RJ, Wassenaar TM, Blaser MJ., Genome Res. 13(2), 2003
PMID: 12566393
Application of tetranucleotide frequencies for the assignment of genomic fragments.
Teeling H, Meyerdierks A, Bauer M, Amann R, Glockner FO., Environ. Microbiol. 6(9), 2004
PMID: 15305919
Community-wide analysis of microbial genome sequence signatures.
Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF., Genome Biol. 10(8), 2009
PMID: 19698104



Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 25798780
PubMed | Europe PMC

Suchen in

Google Scholar