Local PCA Learning with Resolution-Dependent Mixtures of Gaussians

Meinicke P, Ritter H (1999)
In: ICANN 99. Ninth International Conference on Artificial Neural Networks., 1(470). Edinburgh: IET: 497-502.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Konferenzbeitrag | Veröffentlicht | Englisch
Autor
;
Abstract / Bemerkung
A globally linear model, implied by conventional principal component analysis (PCA), may be insufficient to represent multivariate data in many situations. An important question is then how to find an appropriate partitioning of the data space together with a proper choice of the local numbers of principal components (PCs). We address both problems within a density estimation framework and propose a probabilistic approach which is based on a mixture of subspace-constrained Gaussians. Thereby the number of local PCs depends on a global resolution parameter, which represents the assumed noise level and determines the degree of smoothing imposed by the model. As a result, the model leads to an automatic resolution-dependent adjustment of the optimal principal subspace dimensionalities, which may vary among the different mixture components. Furthermore it provides the optimization with an annealing scheme, which solves the initialization problem and offers an incremental model refinement procedure.
Erscheinungsjahr
Titel des Konferenzbandes
ICANN 99. Ninth International Conference on Artificial Neural Networks
Band
1
Zeitschriftennummer
470
Seite
497-502
Konferenz
Ninth International Conference on Artificial Neural Networks
Konferenzort
Edinburgh
Konferenzdatum
1999-09-07 – 1999-09-10
PUB-ID

Zitieren

Meinicke P, Ritter H. Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. In: ICANN 99. Ninth International Conference on Artificial Neural Networks. Vol 1. Edinburgh: IET; 1999: 497-502.
Meinicke, P., & Ritter, H. (1999). Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. ICANN 99. Ninth International Conference on Artificial Neural Networks, 1(470), 497-502. doi:10.1049/cp:19991158
Meinicke, P., and Ritter, H. (1999). “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians” in ICANN 99. Ninth International Conference on Artificial Neural Networks, vol. 1, (Edinburgh: IET), 497-502.
Meinicke, P., & Ritter, H., 1999. Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. In ICANN 99. Ninth International Conference on Artificial Neural Networks. no.1 Edinburgh: IET, pp. 497-502.
P. Meinicke and H. Ritter, “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians”, ICANN 99. Ninth International Conference on Artificial Neural Networks, vol. 1, Edinburgh: IET, 1999, pp.497-502.
Meinicke, P., Ritter, H.: Local PCA Learning with Resolution-Dependent Mixtures of Gaussians. ICANN 99. Ninth International Conference on Artificial Neural Networks. 1, p. 497-502. IET, Edinburgh (1999).
Meinicke, Peter, and Ritter, Helge. “Local PCA Learning with Resolution-Dependent Mixtures of Gaussians”. ICANN 99. Ninth International Conference on Artificial Neural Networks. Edinburgh: IET, 1999.Vol. 1. 497-502.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar