Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling

Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, et al. (2013)
Genome biology 14(2).

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ; ; ; ; ;
All
Abstract
BACKGROUND: The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. RESULTS: Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. CONCLUSIONS: Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host.
Publishing Year
ISSN
PUB-ID

Cite this

Clarke M, Lohan AJ, Liu B, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology. 2013;14(2).
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., et al. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology, 14(2).
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Bürglin, T. R., et al. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology 14.
Clarke, M., et al., 2013. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology, 14(2).
M. Clarke, et al., “Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling”, Genome biology, vol. 14, 2013.
Clarke, M., Lohan, A.J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Bürglin, T.R., Frech, C., Turcotte, B., Kopec, K.O., Synnott, J.M., Choo, C., Paponov, I., Finkler, A., Heng Tan, C.S., Hutchins, A.P., Weinmeier, T., Rattei, T., Chu, J.S.C., Gimenez, G., Irimia, M., Rigden, D.J., Fitzpatrick, D.A., Lorenzo-Morales, J., Bateman, A., Chiu, C.-H., Tang, P., Hegemann, P., Fromm, H., Raoult, D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M.L., Horn, M., Schaap, P., Caler, L., Loftus, B.J.: Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology. 14, (2013).
Clarke, Michael, Lohan, Amanda J, Liu, Bernard, Lagkouvardos, Ilias, Roy, Scott, Zafar, Nikhat, Bertelli, Claire, Schilde, Christina, Kianianmomeni, Arash, Bürglin, Thomas R, Frech, Christian, Turcotte, Bernard, Kopec, Klaus O, Synnott, John M, Choo, Caleb, Paponov, Ivan, Finkler, Aliza, Heng Tan, Chris Soon, Hutchins, Andrew P, Weinmeier, Thomas, Rattei, Thomas, Chu, Jeffery S C, Gimenez, Gregory, Irimia, Manuel, Rigden, Daniel J, Fitzpatrick, David A, Lorenzo-Morales, Jacob, Bateman, Alex, Chiu, Cheng-Hsun, Tang, Petrus, Hegemann, Peter, Fromm, Hillel, Raoult, Didier, Greub, Gilbert, Miranda-Saavedra, Diego, Chen, Nansheng, Nash, Piers, Ginger, Michael L, Horn, Matthias, Schaap, Pauline, Caler, Lis, and Loftus, Brendan J. “Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling”. Genome biology 14.2 (2013).
This data publication is cited in the following publications:
This publication cites the following data publications:

55 Citations in Europe PMC

Data provided by Europe PubMed Central.

Statins and voriconazole induce programmed cell death in Acanthamoeba castellanii.
Martin-Navarro CM, Lopez-Arencibia A, Sifaoui I, Reyes-Batlle M, Valladares B, Martinez-Carretero E, Pinero JE, Maciver SK, Lorenzo-Morales J., Antimicrob. Agents Chemother. 59(5), 2015
PMID: 25733513
External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.
Antos-Krzeminska N, Jarmuszkiewicz W., Protist 165(5), 2014
PMID: 25113830
Encystment in Acanthamoeba castellanii: a review.
Lloyd D., Exp. Parasitol. 145 Suppl(), 2014
PMID: 24726698

113 References

Data provided by Europe PubMed Central.

Apollo: a sequence annotation editor.
Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME., Genome Biol. 3(12), 2002
PMID: 12537571
Apollo Genome Annotation Curation Tool.
AUTHOR UNKNOWN, 0
New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information.
Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV., PLoS Negl Trop Dis 4(6), 2010
PMID: 20559563
Uniref.
AUTHOR UNKNOWN, 0
Pfam.
AUTHOR UNKNOWN, 0
TIGRFAMs.
AUTHOR UNKNOWN, 0
Prosite.
AUTHOR UNKNOWN, 0
InterPro.
AUTHOR UNKNOWN, 0
The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology.
Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681408
Broad Institute.
AUTHOR UNKNOWN, 0
SIMAP--a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters.
Rattei T, Tischler P, Gotz S, Jehl MA, Hoser J, Arnold R, Conesa A, Mewes HW., Nucleic Acids Res. 38(Database issue), 2010
PMID: 19906725
PhyloGenie: automated phylome generation and analysis.
Frickey T, Lupas AN., Nucleic Acids Res. 32(17), 2004
PMID: 15459293
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 23375108
PubMed | Europe PMC

Search this title in

Google Scholar