Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling

Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, et al. (2013)
Genome biology 14(2): R11.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
BACKGROUND: The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. RESULTS: Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. CONCLUSIONS: Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host.
Erscheinungsjahr
Zeitschriftentitel
Genome biology
Band
14
Zeitschriftennummer
2
Seite
R11
ISSN
PUB-ID

Zitieren

Clarke M, Lohan AJ, Liu B, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology. 2013;14(2):R11.
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., et al. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology, 14(2), R11. doi:10.1186/gb-2013-14-2-r11
Clarke, M., Lohan, A. J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Bürglin, T. R., et al. (2013). Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology 14, R11.
Clarke, M., et al., 2013. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology, 14(2), p R11.
M. Clarke, et al., “Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling”, Genome biology, vol. 14, 2013, pp. R11.
Clarke, M., Lohan, A.J., Liu, B., Lagkouvardos, I., Roy, S., Zafar, N., Bertelli, C., Schilde, C., Kianianmomeni, A., Bürglin, T.R., Frech, C., Turcotte, B., Kopec, K.O., Synnott, J.M., Choo, C., Paponov, I., Finkler, A., Heng Tan, C.S., Hutchins, A.P., Weinmeier, T., Rattei, T., Chu, J.S.C., Gimenez, G., Irimia, M., Rigden, D.J., Fitzpatrick, D.A., Lorenzo-Morales, J., Bateman, A., Chiu, C.-H., Tang, P., Hegemann, P., Fromm, H., Raoult, D., Greub, G., Miranda-Saavedra, D., Chen, N., Nash, P., Ginger, M.L., Horn, M., Schaap, P., Caler, L., Loftus, B.J.: Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome biology. 14, R11 (2013).
Clarke, Michael, Lohan, Amanda J, Liu, Bernard, Lagkouvardos, Ilias, Roy, Scott, Zafar, Nikhat, Bertelli, Claire, Schilde, Christina, Kianianmomeni, Arash, Bürglin, Thomas R, Frech, Christian, Turcotte, Bernard, Kopec, Klaus O, Synnott, John M, Choo, Caleb, Paponov, Ivan, Finkler, Aliza, Heng Tan, Chris Soon, Hutchins, Andrew P, Weinmeier, Thomas, Rattei, Thomas, Chu, Jeffery S C, Gimenez, Gregory, Irimia, Manuel, Rigden, Daniel J, Fitzpatrick, David A, Lorenzo-Morales, Jacob, Bateman, Alex, Chiu, Cheng-Hsun, Tang, Petrus, Hegemann, Peter, Fromm, Hillel, Raoult, Didier, Greub, Gilbert, Miranda-Saavedra, Diego, Chen, Nansheng, Nash, Piers, Ginger, Michael L, Horn, Matthias, Schaap, Pauline, Caler, Lis, and Loftus, Brendan J. “Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling”. Genome biology 14.2 (2013): R11.

90 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Interactions in the microbiome: communities of organisms and communities of genes.
Boon E, Meehan CJ, Whidden C, Wong DH, Langille MG, Beiko RG., FEMS Microbiol Rev 38(1), 2014
PMID: 23909933
The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas.
Du Q, Schilde C, Birgersson E, Chen ZH, McElroy S, Schaap P., Cell Signal 26(2), 2014
PMID: 24184654
Tracing the primordial Chlamydiae: extinct parasites of plants?
Subtil A, Collingro A, Horn M., Trends Plant Sci 19(1), 2014
PMID: 24210739
Earliest Holozoan expansion of phosphotyrosine signaling.
Suga H, Torruella G, Burger G, Brown MW, Ruiz-Trillo I., Mol Biol Evol 31(3), 2014
PMID: 24307687
The genome of the foraminiferan Reticulomyxa filosa.
Glöckner G, Hülsmann N, Schleicher M, Noegel AA, Eichinger L, Gallinger C, Pawlowski J, Sierra R, Euteneuer U, Pillet L, Moustafa A, Platzer M, Groth M, Szafranski K, Schliwa M., Curr Biol 24(1), 2014
PMID: 24332546
The natural alternative: protozoa as cellular models for Legionella infection.
Hoffmann C, Harrison CF, Hilbi H., Cell Microbiol 16(1), 2014
PMID: 24168696
Predator vs aliens: bacteria interactions with Acanthamoeba.
Khan NA, Siddiqui R., Parasitology 141(7), 2014
PMID: 24512693
Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii.
Allombert J, Vianney A, Laugier C, Petry S, Hébert L., BMC Microbiol 14(), 2014
PMID: 24641089
The genomic and cellular foundations of animal origins.
Richter DJ, King N., Annu Rev Genet 47(), 2013
PMID: 24050174
Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity.
Romeralo M, Skiba A, Gonzalez-Voyer A, Schilde C, Lawal H, Kedziora S, Cavender JC, Glöckner G, Urushihara H, Schaap P., Proc Biol Sci 280(1764), 2013
PMID: 23782883
Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes.
Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C., Science 341(6143), 2013
PMID: 23869018
A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes.
Schallenberg-Rüdinger M, Lenz H, Polsakiewicz M, Gott JM, Knoop V., RNA Biol 10(9), 2013
PMID: 23899506
Bacterial killing in macrophages and amoeba: do they all use a brass dagger?
German N, Doyscher D, Rensing C., Future Microbiol 8(10), 2013
PMID: 24059917
Strategies to discover the structural components of cyst and oocyst walls.
Samuelson J, Bushkin GG, Chatterjee A, Robbins PW., Eukaryot Cell 12(12), 2013
PMID: 24096907
Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages.
de Mendoza A, Sebé-Pedrós A, Šestak MS, Matejcic M, Torruella G, Domazet-Loso T, Ruiz-Trillo I., Proc Natl Acad Sci U S A 110(50), 2013
PMID: 24277850

113 References

Daten bereitgestellt von Europe PubMed Central.

Apollo: a sequence annotation editor.
Lewis SE, Searle SM, Harris N, Gibson M, Lyer V, Richter J, Wiel C, Bayraktaroglu L, Birney E, Crosby MA, Kaminker JS, Matthews BB, Prochnik SE, Smithy CD, Tupy JL, Rubin GM, Misra S, Mungall CJ, Clamp ME., Genome Biol. 3(12), 2002
PMID: 12537571
Apollo Genome Annotation Curation Tool.
AUTHOR UNKNOWN, 0
New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information.
Lorenzi HA, Puiu D, Miller JR, Brinkac LM, Amedeo P, Hall N, Caler EV., PLoS Negl Trop Dis 4(6), 2010
PMID: 20559563
Uniref.
AUTHOR UNKNOWN, 0
Pfam.
AUTHOR UNKNOWN, 0
TIGRFAMs.
AUTHOR UNKNOWN, 0
Prosite.
AUTHOR UNKNOWN, 0
InterPro.
AUTHOR UNKNOWN, 0
The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology.
Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R, Apweiler R., Nucleic Acids Res. 32(Database issue), 2004
PMID: 14681408
Broad Institute.
AUTHOR UNKNOWN, 0
SIMAP--a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters.
Rattei T, Tischler P, Gotz S, Jehl MA, Hoser J, Arnold R, Conesa A, Mewes HW., Nucleic Acids Res. 38(Database issue), 2010
PMID: 19906725
PhyloGenie: automated phylome generation and analysis.
Frickey T, Lupas AN., Nucleic Acids Res. 32(17), 2004
PMID: 15459293
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S., Mol. Biol. Evol. 28(10), 2011
PMID: 21546353

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 23375108
PubMed | Europe PMC

Suchen in

Google Scholar