Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)

Kowalewski B, Heimann P, Ortkras T, Lüllmann-Rauch R, Sawada T, Walkley SU, Dierks T, Damme M (2015)
Human Molecular Genetics 24(7): 1856-1868.

Journal Article | Published | English

No fulltext has been uploaded

Author
; ; ; ; ; ; ;
Abstract
: Deficiency of Arylsulfatase G (ARSG) leads to a lysosomal storage disease in mice resembling biochemical and pathological features of the mucopolysaccharidoses and particularly features of mucopolysaccharidosis type III (Sanfilippo syndrome). Here we show that Arsg KO mice share common neuropathological findings with other Sanfilippo syndrome models and patients, but can be clearly distinguished by the limitation of most phenotypic alterations to the cerebellum, presenting with ataxia as the major neurological finding. We determined in detail the expression of ARSG in the central nervous system and observed highest expression in perivascular macrophages (which are characterized by abundant vacuolization in Arsg KO mice) and oligodendrocytes. To gain insight into possible mechanisms leading to ataxia, the pathology in older adult mice (> 12 months) was investigated in detail. This study revealed massive loss of Purkinje cells and gliosis in the cerebellum, and secondary accumulation of glycolipids like GM2 and GM3 gangliosides and unesterified cholesterol in surviving Purkinje cells, as well as neurons of some other brain regions. The abundant presence of ubiquitin and p62-positive aggregates in degenerating Purkinje cells coupled with the absence of significant defects in macroautophagy is consistent with lysosomal membrane permeabilization playing a role in the pathogenesis of Arsg deficient mice and presumably Sanfilippo disease in general. Our data delineating the phenotype of mucopolysaccharidosis IIIE in a mouse KO model should help in the identification of possible human cases of this disease.
Publishing Year
ISSN
eISSN
PUB-ID

Cite this

Kowalewski B, Heimann P, Ortkras T, et al. Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics. 2015;24(7):1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S. U., Dierks, T., et al. (2015). Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics, 24(7), 1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S. U., Dierks, T., and Damme, M. (2015). Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics 24, 1856-1868.
Kowalewski, B., et al., 2015. Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics, 24(7), p 1856-1868.
B. Kowalewski, et al., “Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)”, Human Molecular Genetics, vol. 24, 2015, pp. 1856-1868.
Kowalewski, B., Heimann, P., Ortkras, T., Lüllmann-Rauch, R., Sawada, T., Walkley, S.U., Dierks, T., Damme, M.: Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III). Human Molecular Genetics. 24, 1856-1868 (2015).
Kowalewski, Björn, Heimann, Peter, Ortkras, Theresa, Lüllmann-Rauch, Renate, Sawada, Tomo, Walkley, Steven U, Dierks, Thomas, and Damme, Markus. “Ataxia is the major neuropathological finding in Arylsulfatase G deficient mice: Similarities and dissimilarities to Sanfilippo disease (Mucopolysaccharidosis type III)”. Human Molecular Genetics 24.7 (2015): 1856-1868.
This data publication is cited in the following publications:
This publication cites the following data publications:

1 Citation in Europe PMC

Data provided by Europe PubMed Central.

Sanfilippo syndrome: causes, consequences, and treatments.
Fedele AO., Appl Clin Genet 8(), 2015
PMID: 26648750

44 References

Data provided by Europe PubMed Central.

Neuropathology in mouse models of mucopolysaccharidosis type I, IIIA and IIIB.
Wilkinson FL, Holley RJ, Langford-Smith KJ, Badrinath S, Liao A, Langford-Smith A, Cooper JD, Jones SA, Wraith JE, Wynn RF, Merry CL, Bigger BW., PLoS ONE 7(4), 2012
PMID: 22558223
A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome).
Bhaumik M, Muller VJ, Rozaklis T, Johnson L, Dobrenis K, Bhattacharyya R, Wurzelmann S, Finamore P, Hopwood JJ, Walkley SU, Stanley P., Glycobiology 9(12), 1999
PMID: 10561464
Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.
Mato M, Ookawara S, Sakamoto A, Aikawa E, Ogawa T, Mitsuhashi U, Masuzawa T, Suzuki H, Honda M, Yazaki Y, Watanabe E, Luoma J, Yla-Herttuala S, Fraser I, Gordon S, Kodama T., Proc. Natl. Acad. Sci. U.S.A. 93(8), 1996
PMID: 8622926
Blood-brain barrier impairment in an animal model of MPS III B.
Garbuzova-Davis S, Louis MK, Haller EM, Derasari HM, Rawls AE, Sanberg PR., PLoS ONE 6(3), 2011
PMID: 21408219
Caprine mucopolysaccharidosis IIID: fetal and neonatal brain and liver glycosaminoglycan and morphological perturbations.
Jones MZ, Alroy J, Downs-Kelly E, Lucas RE, Kraemer SA, Cavanagh KT, King B, Hopwood JJ., J. Mol. Neurosci. 24(2), 2004
PMID: 15456941
Heparan sulfate 3-O-sulfation: a rare modification in search of a function.
Thacker BE, Xu D, Lawrence R, Esko JD., Matrix Biol. 35(), 2014
PMID: 24361527
The role and metabolism of sulfatide in the nervous system.
Eckhardt M., Mol. Neurobiol. 37(2-3), 2008
PMID: 18465098
Two cases of mucopolysaccharidosis type III (Sanfilippo). A biochemical study.
Van Dessel G, Lagrou A, Martin JJ, Ceuterick C, Dierick W., J. Neurol. Sci. 40(2-3), 1979
PMID: 107278
Caprine mucopolysaccharidosis-IIID: clinical, biochemical, morphological and immunohistochemical characteristics.
Jones MZ, Alroy J, Boyer PJ, Cavanagh KT, Johnson K, Gage D, Vorro J, Render JA, Common RS, Leedle RA, Lowrie C, Sharp P, Liour SS, Levene B, Hoard H, Lucas R, Hopwood JJ., J. Neuropathol. Exp. Neurol. 57(2), 1998
PMID: 9600207
Cholesterol accumulation in NPC1-deficient neurons is ganglioside dependent.
Gondre-Lewis MC, McGlynn R, Walkley SU., Curr. Biol. 13(15), 2003
PMID: 12906793
Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C.
Zhou S, Davidson C, McGlynn R, Stephney G, Dobrenis K, Vanier MT, Walkley SU., Am. J. Pathol. 179(2), 2011
PMID: 21708114
Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury.
Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, Yoshimori T., EMBO J. 32(17), 2013
PMID: 23921551

AUTHOR UNKNOWN, Nat Commun 4(), 2013
Scoring evaluation of the natural course of mucopolysaccharidosis type IIIA (Sanfilippo syndrome type A).
Meyer A, Kossow K, Gal A, Muhlhausen C, Ullrich K, Braulke T, Muschol N., Pediatrics 120(5), 2007
PMID: 17938166
Genetic heterogeneity and clinical variability in the Sanfilippo syndrome (types A, B, and C).
van de Kamp JJ, Niermeijer MF, von Figura K, Giesberts MA., Clin. Genet. 20(2), 1981
PMID: 6796310

AUTHOR UNKNOWN, Matrix Biol. 35(), 2013

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25452429
PubMed | Europe PMC

Search this title in

Google Scholar