Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape

Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF (2015)
BMC Genomics 16: 73.

Download
OA
Journal Article | Published | English
Abstract
Background Bacillus methanolicus MGA3 is a thermophilic, facultative ribulose monophosphate (RuMP) cycle methylotroph. Together with its ability to produce high yields of amino acids, the relevance of this microorganism as a promising candidate for biotechnological applications is evident. The B. methanolicus MGA3 genome consists of a 3,337,035 nucleotides (nt) circular chromosome, the 19,174 nt plasmid pBM19 and the 68,999 nt plasmid pBM69. 3,218 protein-coding regions were annotated on the chromosome, 22 on pBM19 and 82 on pBM69. In the present study, the RNA-seq approach was used to comprehensively investigate the transcriptome of B. methanolicus MGA3 in order to improve the genome annotation, identify novel transcripts, analyze conserved sequence motifs involved in gene expression and reveal operon structures. For this aim, two different cDNA library preparation methods were applied: one which allows characterization of the whole transcriptome and another which includes enrichment of primary transcript 5′-ends. Results Analysis of the primary transcriptome data enabled the detection of 2,167 putative transcription start sites (TSSs) which were categorized into 1,642 TSSs located in the upstream region (5′-UTR) of known protein-coding genes and 525 TSSs of novel antisense, intragenic, or intergenic transcripts. Firstly, 14 wrongly annotated translation start sites (TLSs) were corrected based on primary transcriptome data. Further investigation of the identified 5′-UTRs resulted in the detailed characterization of their length distribution and the detection of 75 hitherto unknown cis-regulatory RNA elements. Moreover, the exact TSSs positions were utilized to define conserved sequence motifs for translation start sites, ribosome binding sites and promoters in B. methanolicus MGA3. Based on the whole transcriptome data set, novel transcripts, operon structures and mRNA abundances were determined. The analysis of the operon structures revealed that almost half of the genes are transcribed monocistronically (940), whereas 1,164 genes are organized in 381 operons. Several of the genes related to methylotrophy had highly abundant transcripts. Conclusion The extensive insights into the transcriptional landscape of B. methanolicus MGA3, gained in this study, represent a valuable foundation for further comparative quantitative transcriptome analyses and possibly also for the development of molecular biology tools which at present are very limited for this organism.
Publishing Year
ISSN
Financial disclosure
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Cite this

Irla M, Neshat A, Brautaset T, Rückert C, Kalinowski J, Wendisch VF. Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 2015;16: 73.
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., & Wendisch, V. F. (2015). Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics, 16: 73.
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., and Wendisch, V. F. (2015). Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics 16:73.
Irla, M., et al., 2015. Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics, 16: 73.
M. Irla, et al., “Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape”, BMC Genomics, vol. 16, 2015, : 73.
Irla, M., Neshat, A., Brautaset, T., Rückert, C., Kalinowski, J., Wendisch, V.F.: Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape. BMC Genomics. 16, : 73 (2015).
Irla, Marta, Neshat, Armin, Brautaset, Trygve, Rückert, Christian, Kalinowski, Jörn, and Wendisch, Volker F. “Transcriptome analysis of thermophilic methylotrophic *Bacillus methanolicus* MGA3 using RNA-sequencing provides detailed insights into its previously uncharted transcriptional landscape”. BMC Genomics 16 (2015): 73.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2016-11-24T11:04:21Z

This data publication is cited in the following publications:
This publication cites the following data publications:

0 Citations in Europe PMC

Data provided by Europe PubMed Central.

58 References

Data provided by Europe PubMed Central.

Regulation by small RNAs in bacteria: expanding frontiers.
Storz G, Vogel J, Wassarman KM., Mol. Cell 43(6), 2011
PMID: 21925377
Coenzyme B12 controls transcription of the Streptomyces class Ia ribonucleotide reductase nrdABS operon via a riboswitch mechanism.
Borovok I, Gorovitz B, Schreiber R, Aharonowitz Y, Cohen G., J. Bacteriol. 188(7), 2006
PMID: 16547038
Structure determination of a nucleoside Q precursor isolated from E. coli tRNA: 7-(aminomethyl)-7-deazaguanosine.
Okada N, Noguchi S, Nishimura S, Ohgi T, Goto T, Crain PF, McCloskey JA., Nucleic Acids Res. 5(7), 1978
PMID: 353740
Riboswitches in eubacteria sense the second messenger c-di-AMP.
Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR., Nat. Chem. Biol. 9(12), 2013
PMID: 24141192
Comparative genomic analysis of T-box regulatory systems in bacteria.
Vitreschak AG, Mironov AA, Lyubetsky VA, Gelfand MS., RNA 14(4), 2008
PMID: 18359782
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Gutierrez-Preciado A, Henkin TM, Grundy FJ, Yanofsky C, Merino E., Microbiol. Mol. Biol. Rev. 73(1), 2009
PMID: 19258532

Export

0 Marked Publications

Open Data PUB

Web of Science

View record in Web of Science®

Sources

PMID: 25758049
PubMed | Europe PMC

Search this title in

Google Scholar