Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points

Panzner M (2013)
Bielefeld: Universität Bielefeld.

Download
OA
Bielefeld Master Thesis | German
Abstract
Human motion classification is an important area of computer vision with a variety of applications in surveillance, human-computer interfaces and robotics. Many current systems for human motion classification rely on a batch processing scheme to learn their classification model. This excludes these systems from many possible applications where fast response to new classes of stimuli is necessary. This thesis will present two approaches for incremental online classification of human motion, which will allow the system to adapt to new situations on the fly, without the need to go through the whole batch learning process again. The developed algorithms are tested against a current state of the art offline classification system, which already has shown good results on several human motion databases. It will be shown, that the developed online classification systems can archive competitive results while avoiding several limitations of the offline approaches.
Year
PUB-ID

Cite this

Panzner M. Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points. Bielefeld: Universität Bielefeld; 2013.
Panzner, M. (2013). Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points. Bielefeld: Universität Bielefeld.
Panzner, M. (2013). Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points. Bielefeld: Universität Bielefeld.
Panzner, M., 2013. Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points, Bielefeld: Universität Bielefeld.
M. Panzner, Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points, Bielefeld: Universität Bielefeld, 2013.
Panzner, M.: Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points. Universität Bielefeld, Bielefeld (2013).
Panzner, Maximilian. Online Klassifikation menschlicher Aktionen anhand von Space-Time Interest-Points. Bielefeld: Universität Bielefeld, 2013.
Main File(s)
Access Level
OA Open Access
Last Uploaded
2014-11-06 11:22:07

This data publication is cited in the following publications:
This publication cites the following data publications:

Export

0 Marked Publications

Open Data PUB

Search this title in

Google Scholar